• 締切済み
  • 暇なときにでも

漸化式について

高校生のものです。 a(1)=1、a(n+1)=Σka(k)という漸化式があるとき、Σk/a(k+1)の値を求めよ。という問題がありました。 ただしΣの範囲はk=1からnまでです。 まずa(n)を求めるとn≧2のとき、a(n)=n!/2という数列が出てきます。 次にΣk/a(k+1)を求めるために、出したa(n)を代入すると、2Σk/(k+1)!と変形できますが、ここらからはどうすればよいのでしょうか?

共感・応援の気持ちを伝えよう!

  • 回答数2
  • 閲覧数180
  • ありがとう数1

みんなの回答

  • 回答No.2
  • Tacosan
  • ベストアンサー率23% (3656/15482)

あ~, 申し訳ない.... 特に「こうしよう」と思ったわけじゃないんです. はじめは違うことを思っていたんですが, ふと「(k+1) - 1 と分ける」と突然思い付いて, やってみたらできちゃった, と. 無意識に「分解する」ことを考えたのかもしれないんですが, 少なくとも「何かを意識して考えた」ことはないです. 全然参考にならないですね. ごめんなさい.

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • 漸化式の…

    漸化式のα=pα+qを利用する方程式の教科書説明で 「p、qを定数、p≠1として漸化式が       an+1=pan+q で表されている時、この式がある値αを用いて       an+1-α=p(an-α) と変形できたとすると、数列{an-α}は公比pの等比数列になる。」ってところで、何故数列{an-α}なのでしょう?数列{an+1-α}ではないのでしょうか?

  • 漸化式を誰か教えてください

    今、漸化式の問題を解いているのですがどうしても分からない問題があるので教えてください。 問題は a(1)=(1/3),【3^(n-1)】a(n+1)=【3^n】a(n)+1(n=1,2,3,…)で定められる数列{a(n)}の初項から第n項までの和をS(n)とする。 このとき、lim【n→∞】S(n)の値は3/4で求めかたが分かりませんので、所々教えてください。 時間があるかた教えていただければ幸いです。 この問題を解くにはb(n)=【3^n】a(n)とすると漸化式が求められるそうなのですが (1) b(n+1)=b(n)+1になるのでしょうか? 【3^(n-1)】a(n+1)はb(n+1)になってしまうの? (2) b(1)=3*((1/3)=1になってしまうの? (3) b(n)=1+(n-1)*1=nの式はどこから現われたのか? (4) a(n)=【n/(3^n)】とSn=Σ(n,k=1) 【k/(3^k)】は何処から現れたのか? (5) S(n)-(1/3)*S(n)は何処から現われたのか? (6) ↑を計算すると(1/3)+(1/3^2)+…+(1/3^n)-【n/(3^(n+1)】 となりますが、どうしてΣ(n,k=1)【n/(3^(n+1)】となるのでしょうか? (7) (【(1/3)*{1-(1/3)n}】/【1-(1/3)】) -n/【3^(n+1)】は何処から現われたのでしょうか? ↑を計算すると(1/2)*【1-(1/3)n】-n/【3^(n+1)】となります。 S(n)=(3/4)*【【1-(1/3)n】】-(3/2)*n/【3^(n+1)】の形にどうしてなるのか分かりません。 (8) ↑の式は(1/3)nのnに∞を代入して0,【3^(n+1)】のnの部分に代入して0になって3/4となるのでしょうか?

  • 数列 漸化式

    A(n+1)=2A(n)+n (初項A(1)=1) という数列があるとします。 この一般項の形を求めるのに、この漸化式を満たす数列{B(n)}=αn+βを設定して、 この漸化式に代入、恒等式から{B(n)=-n-1}がわかります。 この{B(n)}の式が最初の漸化式を満たすわけですから、 A(n+1)=2A(n)+n B(n+1)=2B(n)+nの両辺を引いて A(n+1)-B(n+1)=2(A(n)-B(n))という等比数列が成り立つので、 A(n)=3*(2のn-1乗)-n-1   となると思うのですが、 ここから質問です。 なぜ最初の漸化式を満たした、B(n)=-n-1 と これまた漸化式を満たしている、A(n)=3*(2のn-1乗)-n-1 が異なっているのでしょうか? 回答お願いいたします。

  • 回答No.1
  • Tacosan
  • ベストアンサー率23% (3656/15482)

k = (k+1) - 1 ですな.

共感・感謝の気持ちを伝えよう!

質問者からのお礼

回答ありがとうございました。 確かにできましたが、どういう発想で解法を考えましたか? やっぱり分数型のΣの計算は扱いにくいので、相殺するタイプにしようと考えたんですか?

関連するQ&A

  • 漸化式を解く問題なのですが。

    この漸化式、nに具体的に数値をいれていくと簡単に法則性が見つかって、数学的帰納法で一般項は出るのですが。 式変形をして等比数列の形に持って行って解くなどの解き方はありませんかね? 言い換えると 具体的に数値代入→規則性発見→帰納法で証明 以外の一般項の導き方はありませんか?

  • 漸化式の変形

    漸化式の書き方はよく分からないんですけど、数列の第3項はA_3のように書きたいと思います。 数列A_nがA_1=3,A_n+1=2A_n-nで定義されるとき、一般項A_nを求めよ。 上のような問題でA_n+1=2A_n-nを変形すると、A_n+1-(n+2)=2(A_n-(n+1))と変形できると解答にあるのですが、 右辺の(n+1)って何ですか?また、これの導き方を教えていただきたいです。

  • だれか隣接3項間漸化式について教えてください。

    中年男性です。いま数列の勉強をしています。「なるほど高校数学 数列の物語」という読本を 読んでいるのですが、手に負えないので質問させてもらいました。  漸化式  A1=2, A2=3, An+2=5An+1-6An    n>=1 ・・・(1)  を満たす数列が特性方程式X^2=5X-6の解 X=2、X=3 から 2^n-1 と3^n-1に なることは実際に確かめて確認して納得したのですが、続くくだりから判らなくなって しまいました。  そのくだりとは“そこで次に問題となるのが、上記のような等比数列以外にこの  漸化式を満たす数列があるのか、ということです。  結論からいうと、特性方程式が異なる2つの解をもつときは、特性方程式の解を  公比とする等比数列の組み合わせを考えるだけで十分です。このことは次の  ようにして判ります・・・” と書いてあり特性方程式の解以外にないことの証明が始まるものと期待して読み進めたの ですが、漸化式の変形が始まり結局    An+1-2An=(A2-2A1)3^n-1    n>=1  ・・・(2)    An+1-3An=(A2-3A1)2^n-1    n>=1  ・・・(3)  という式になり、(2)式から(3)式を引くことで、    An=(A2-2A1)3^n-1-(A2-3A1)2^n-1     n>=1  となり、条件A1=2、A2=3を代入して一般項は    An=-1×3^n-1+3×2^n-1     n>=1 ・・・(4)  となりました。  これで特性方程式の解から導かれる数列以外に解がないことの  証明になるのでしょうか。また数列2^n-1や数列3^n-1が漸化式を  満たすことはすでにnに1、2、3・・・と代入して確認したのですが  一般項が(4)式であるということはどういうことなのでしょうか。  (4)式にnに1、2、3・・・と代入して確認していませんが(成立するのでしょうが)  このあたりの事情がよく判りません。  どなたか解説して戴けないでしょうか。

  • 漸化式の問題

    数列{an}はa[1]=1で、漸化式2(n+1)a[n+1]-13a=0(n=1,2,...)をみたすとする。このときのa[n]を求めよ。またa[n]の最大値を与えるnの値を求めよ。 ↑この問題に手が付けられません。どなたか教えてくれると助かります。

  • 漸化式の特性方程式について

     数列において、第n項をA(n)と表記いたします。  漸化式A(n+1)=2A(n)+1・・・(1)かつA(1)=3を満たす数列のA(n)を求めなさい。という問題について、p=2p+1(←特性方程式)を解き、そのpの値を{A(n+1)-p}=2{A(n)-p}に代入することで、数列A(n)-pは公費2の等比数列で・・・と解きますよね?なぜ特性方程式では、A(n+1)、A(n)ともにpとしてよいのでしょうか?どなたかご存知の方お見えでしたらよろしくお願いいたします。  また、その答えとして、(1)式を{A(n+1)-p}=r{A(n)-p}・・・(2)の形にできるとして導くという方法が有名だと思いますが、なぜ、(1)式は(2)式のように等比数列の形に直せると仮定できるのでしょうか?よろしくお願いいたします。

  • 3項間漸化式

    3項間漸化式 a(1)=1,a(2)=2,3a(n+2)-4a(n+1)+a(n)=0(n=1,2,3,...)で定義される数列を{a(n)}とするとき、次の問いに答えよ 壱,a(n+2)=a(n+1)+2a(n)をa(n+2)-αa(n+1)=β<a(n+1)-αa(n)>と変形するとき、係数α,βの値を求めよ 弐,a(n)をnの式で表せ という問題で、(1)は出来たのですが、(2)の途中からがわかりません。 壱は、α=-1,β=2 , α=2,β=-1 が答えになります 弐 α=-1,β=2とすると、 a(n+2)+a(n+1)=2<a(n+1)+a(n)> a(2)+a(1)=2 ←この部分が何故こうなるかがわかりません。 以下略 右辺の<>の部分で左辺を割ったのですか・・・? 形が似ているからなんとなく、そう思うのですが、不安です。 そもそも、a(1)=1,a(2)=2 だから、これって成り立たないのではないのですか? 教えてください。

  • 高校二年・漸化式の変形

    高校二年の数学Bで、漸化式の変形について質問です。 以下aの右側の≪≫内は小さく右下についているものとして見て下さい。 「一般にp,qが定数でp≠1のとき、漸化式  a≪n≫=pa≪n≫+q を  a≪n+1≫-k=p(a≪n≫-k) と変形できたとすると、数列a≪n≫の各項から定数kを引いた数列{a≪n≫-k}は公比pの等差数列となることが分かる」 という文章がありました。 この文章の意味がさっぱりわかりません。 どなたかわかりやすく説明頂けませんでしょうか? よろしくお願いします。

  • 漸化式について

    続けて質問してしまってごめんなさい(><) もう一つ分からない事があるのですが、漸化式で(等差数列)の漸化式と(等比数列)の漸化式と(階差数列)の漸化式の使い分けが全く分かりません。特に(階差数列)の漸化式自体良く分からないので、その辺も詳しく説明お願いします。

  • 漸化式

    よろしくお願いします。 [問題] 次の条件で定められる数列{An}の一般項を求めよ。  A1=2、An+1=An/(1+An) (n=1、2、3、……) [解] 条件により A1=2/1、A2=2/3、A3=2/5、A4=2/7  よって、一般に         An=2/(2n-1) ・・・・・・(1)  となることが推測される。   一般項が(1)である数列{An}が、条件を満たすことを示す。  [1] (1)でn=1とおくと  A1=2  [2] (1)をAn/(1+An)に代入すると       An/(1+An)=2/(2n-1)÷{1+2/(2n-1)}              =2/(2n-1)÷(2n+1)/(2n-1)              =2/(2n+1)              =2/{2(n+1)-1}    よって、An+1=An/(1+An) が成り立つ。  [1]、[2]から、求める一般項は  An=2/(2n-1)。 ※このサイトだと項の番号をうまく表記できないので、A1は初項、Anは第n項、An+1は第n+1項などと表しています。 この問題は数列の一般項を推測し、推測した一般項が条件を満たすことを示して、一般項を求めてるみたいなのですが。 [2]の証明で、どうして(1)が漸化式を満たしてるのか、よく分かりません。どうしてですか?。 また、(1)は推測したものだから、全ての自然数nについて(1)が必ず成り立つとは言えないですよね?。なら、(1)を漸化式に代入できないと思うのですが、どうして代入できるのですか?。 以上ですが。分かるかた、教えてくださいm(__)m。

  • 漸化式の問題

    先日苦手な漸化式の問題が出され解いてみたのですがどうしてもうまくいきませんでした。どうしても解いてみたいので、回答と解き方を教えてください。 (問)漸化式(*) x_n+2=2x_n+1-2x_n=0 (n=1,2,…)をみたす数列    (x_n)_n=1,2,…全体のなすベクトル空間をVとする。  (1)Vの一組の基底及び次元を求めよ。  (2)α=1+i,β=1-i (i^2=-1)と置くとき、漸化式         (ⅰ) x_n+1=αx_n, (ⅱ) x_n+1=βx_n (n=1,2,…) をみたす数列(x_n)_n=1,2,…全体のなす集合をそれぞれW_1,W_2とする     と、これらは共にVの部分空間であることを示せ。  (3)漸化式(ⅰ),(ⅱ)をみたす例でない数列をそれぞれw_1,w_2とするとき、 Λ={w_1,w_2}はVの基底になることを示せ。  (4)Λに関する数列(1,1,…)∈Vの座標を求めよ。 以上です。 こんな簡単な問題も分からないのと思わず優しく教えてください。 お願いします。