• ベストアンサー

磁場とともに動く系?

http://imagepot.net/view/123780002752.jpg​ この図を見て頂きたいのですが、#1の電荷が動くことで発生した磁場が#2の電荷と相互作用し、#2の電荷が動くことで発生した磁場#1と相互作用する、という図なのですが、 もし観測者が#1と一緒に動いた場合、#1は動いていないので、磁場もベクトルポテンシャルも発生しないことになります。 これってどう考えれば良いのでしょうか? 特殊相対論が必要であることは分かるのですが、簡単に教えて頂けないでしょうか?

質問者が選んだベストアンサー

  • ベストアンサー
  • yokkun831
  • ベストアンサー率74% (674/908)
回答No.2

特殊相対性理論において、 4元変位ベクトルdX=(cdt,dx,dy,dz)(※)がローレンツ変換を受けますが、同じ形の変換を4元ポテンシャルA=(φ/c,Ax,Ay,Az)が受けるということです。結果として、電磁場のテンソルFはローレンツ変換の行列Lを前後からかけた変換を受けることになるのです。   (※)あえて位置ベクトルとせず、自由ベクトルである変位としました。 以下、4元ベクトルは列ベクトルであるものとして dX'=LdX A'=LA F'=LFtL (tLはLの転置) と変換します。 詳しいことは、下記などを参考にしてください。 http://ja.wikipedia.org/wiki/%E3%83%9E%E3%82%AF%E3%82%B9%E3%82%A6%E3%82%A7%E3%83%AB%E3%81%AE%E6%96%B9%E7%A8%8B%E5%BC%8F http://homepage2.nifty.com/eman/relativity/maxwell.html http://homepage2.nifty.com/ysc/Rel.pdf  P.20前後

その他の回答 (1)

  • yokkun831
  • ベストアンサー率74% (674/908)
回答No.1

#1とともに動く系では、電磁場のローレンツ変換によって電場が生じることが示されています。 実験室系で 電場E=0,磁場Bのとき、力F=v×B #1とともに動く系で 電場E'≒v×B,磁場B'≒Bとなります。 ちなみに相対論的には、電磁場は反対称テンソルとして変換を受けますが、これは4元ポテンシャル(φ/c,A)が4元ベクトルとしてローレンツ変換に従うことによります。

MASSYY
質問者

お礼

回答ありがとうございます。 2つ質問させて下さい。 電磁場のローレンツ変換によって電場が生じる、というのは電荷では電磁にローレンツ変換をかけるということを意味すると思うのですが、 ローレンツ変換はxyzの位置と時間tの関係が分かっていないと変換出来ないわけですが、電磁場にローレンツ変換をかけるというのはどういうことを意味するのでしょうか? 電磁場は反対称テンソルとして変換を受けますが、というところなのですが、反対称テンソルが何かということはもちろん知っていますが、 反対称テンソルとして変換を受けるというのはどういう意味を持っているのでしょうか?

関連するQ&A

  • 定常磁場のディラック方程式と相互作用ハミルトニアン

    相対論的量子力学を勉強しているのですが、わからないところがあるので質問です。 一様定常磁場B内の電子(質量m、電荷-e)を考えたとき、ベクトルポテンシャルをAとして、電子の従うディラック方程式はどのようになりますか?? また、そのディラック方程式を用いて、電子のスピンと磁場との相互作用ハミルトニアンを H=e/2m(σ・B) と示すことは出来ますでしょうか?? 図書館などでも調べたのですが、わからなかったのでどうぞよろしくお願いします。

  • ハミルトニアンと磁場

    通常の分子のハミルトニアンでは、ポテンシャルはクーロン相互作用によるもののみですが、電子が動 くことによって発生する磁場の寄与は考えなくて良いのでしょうか?

  • 電流密度の作る磁場のベクトル成分

    電流密度の作る磁場のベクトル成分 以下の問題で、磁場の係数を除いたベクトル成分が 図にあるように(-sinθ,cosθ,0)となるのですが、 その理由が分かりません。 どなたか教えていただけるとうれしいです。 図のように電荷密度ρで一様に帯電した 半径Rに無限に長い円柱がある。 また、座標軸を図に示すようにとる。 円柱を中心軸(z軸)の方向に一定速度vで動かした。 円柱の内部の電流密度ρvよりできる磁場を求めよ。

  • 重力場と磁場には何か関係があるんですか?

    磁束や磁界の強さは電子の速度によって変化する。 相対性理論によれば質量も物体の速度によって変化する。 電子の素電荷量は電子の速度に関わらず一定量である・・・ と教わってきましたが今でもそうなんでしょうか・・ 昔、ブルーバックスの「新しい重力理論」を読んだとき、天体が進行する軌跡上に光が進行するときと同様の磁界リングに相当するものが観測される・・という記述がありましたが磁場と重力場には何か関係があるのでしょうか? 銀河系にも弱い磁場が観測されているそうですがこのことと何か関係があるんでしょうか・・ 場の方程式で 物体の量×場の強さ×高度=位置エネルギー 物体の量が「質量」と「電荷」があったことは記憶にあります。 磁気量と磁場の強さ・・という関係は記憶がありません。 なぜでしょう・・ 物理は「そういうもんであるからシカと心得よ」ということが多く面白くなかったという印象だけが残っています。 救いをお願いします・・

  • 最初の電場や磁場の定義

     電磁気学の発展史に少し興味があります。  点電荷のCoulmn力をF、位置ベクトルr,r’にある点電荷をQ’,Q、εを真空などの誘電率として、   F=(1/4πε)×Q’Q/|r-r’|^2×(r-r’)/|r-r’|      (1) から、とりあえず電場Eを、   E=F/Q=(1/4πε)×Q/|r-r’|^2×(r-r’)/|r-r’|   (2) と導入するのが、今のふつうのやり方と思えますが、歴史的にはどうなのだろう?、という話です。  例えば電場については、(2)に先行して(1)の遠隔作用に基づいた、ポアソン,グリーン,ガウスらのポテンシャル論があり、その結果を近接作用の考えに基づき利用した、微分形によるファラデイ,マックスウェルの電場の定義が出てきます。  (2)の形は、ポテンシャル論と非常に相性の良い数学的補助手段ではありますが、遠隔作用という問題意識から出発したポアソン,グリーン,ガウスらにとって、(2)によってわざわざ電場を定義までする物理的価値は、あまりなかったように思えます。  とすると、正式な電場の最初の定義は、ファラデイ,マックスウェルなのだろうか?、それともポアソン,グリーン,ガウスらが、一種の便利概念として(2)で導入したのだろうか?、それとも以前から何となく電場という言葉はあったのだろうか?、という疑問が沸きました。  さらに(2)は、電磁気の単位系を定めるのに、非常に都合の良い形をしているので、事によったら、マックスウェル以後においてウェーバーなんかが、単位系設定のために、初めて言い出したのではないか?、などと勘ぐってしまいます。  実際の歴史的事実を具体的に知りたくて質問しました。磁場については、アンペール,ノイマンの数学的ポテンシャル論があり、ファラデイ,マックスウェルにいたります。  以上の経緯は、以下で調べましたが具体的記述がなく、そのものずばりの電磁気の発展史が記述されているような文献等でもかまいません。  ・フント,思想としての物理学の歩み,朝倉書店.  ・広重徹,相対論の形成,みすず書房.  ・菅野礼司,物理学の論理と方法,大月書店.  ・山本義隆,重力と力学的世界,現代数学社.

  • 電磁波と光子

    電磁波と光子 古典的な電磁気学を勉強してます。 基礎的な質問だと思うのですが、 マックスウェル方程式によれば、 rotE=-∂B/∂t divD=ρ rotH=J+∂D/∂t であるから 電界の波動方程式が求まって そこからヘルムホルツの方程式が導けて 電場と磁場の関係から x軸方向に電場が正弦波状に変化するとき y軸方向に磁場も正弦波状の変化をするっていう あのよく見かける電場と磁場が一緒に描かれてる図まではなんとなく理解して 電磁誘導→電場ができる 変位電流→磁場ができる 要するに「電場と磁場の相互作用が電磁波」みたいなまとめでわかった気になってたんですけど、 光は「光子」というボース粒子によって電磁力を伝えたりして、光子は質量ゼロ、電荷ゼロであって…… みたいな量子力学の解説書に、光子は電場や磁場との直接的な相互作用はほとんどないって書いてあって、 たしかに電荷ゼロなら影響ないだろうなって思うんですけど 光 =空間の電場と磁場の変化によって形成される波(波動)である。 =微視的には、電磁波は光子と呼ばれる量子力学的な粒子 (wiki) みたいに書いてあって、 電場(静電場?)って重ね合わせの原理が成り立つから 電磁波が電場と磁場の相互作用なら、真空中とかで電磁波に電場とか加えるとなんとなく振幅が変わるような影響を簡単に受けそうな感じがするので、光子に電場や磁場との相互作用がほとんどないって記述がどうも引っかかって…… でも電磁波と電場および電場のかかっている物質との間に作用するいわゆる電気光学効果(ポッケレス効果とか)は非線形光学結晶などが必要と聞きかじり、電磁波の波長を変換したりするのって大変なんだなーって思うところまで勉強しました。 粒子性と波動性があるといろいろ複雑なのでしょうか…… 粒子性で考えると影響なくて 波動性で考えると電気光学的な影響がある…みたいな そもそも電磁波の波長とかってnmレベルですし、ただの波じゃなくて複素数の波動関数ですもんね。 あ、完全に影響なかったらそもそも非線形光学効果なんてないのだから、「ほとんど」影響ないってのはそういうことか… 量子論を修めろってことですね…… 己が浅学さを反省して、そろそろ19世紀の考え方から20世紀の考え方に移行しようと思います。

  • 近接作用と遠隔作用

    高校の物理の教科書によれば「静止した二つの電荷q1, q2の間にはクーロン力  F = - q1・q2/(εr^2) が働く。また電場Eの中の電荷q1には F=-q1E の力が働き、電荷q2の作る電場は  E = q2/(εr^2) で与えられる」というような説明だったと思います(手元に高校の教科書がないので確かめられませんが)。私はこのような説明の仕方は不適切であると考えます。このような説明ではほとんど全ての人が電場はクーロン力の単なる言い換えであり、ほとんど違いはないと考えてしまうでしょう。電場は「場」を実体と考え、荷電粒子同士が直接相互作用するのではなく、粒子と場が相互作用すると考える近接作用の理論です。近接作用論が自己相互作用にまつわる多くの困難にも拘わらず遠隔作用論に勝利をおさめたことを教えることは、宇宙の見方が天動説から地動説に変わったことを教えるのと同じくらい(あるいはそれ以上に)重要なことではないかと思います。近接作用論が正しい根拠として私が挙げることができるのは 1. 遠隔作用では相対論と適合させることが難しいこと 2. 近接作用と遠隔作用が異なる答えを与えるような問題では、実験は近接作用を支持している(例えば電子は自己相互作用によって異常磁気能率を持つ) といったところですが、これ以外に電荷や電流で作られたのではない電磁場があり、そのような場の中で荷電粒子がローレンツ力を受けることが示せれば場が独立した実在である証拠になるのではないかと思います。マックスウェル方程式は電荷や電流が0でも電磁場は0でない解を持っています。電荷や電流はなしで(磁気単極子もなしで)電磁場だけ存在すると考えられるような例はないでしょうか。高校で近接作用と遠隔作用の違いを曖昧なままにしておくことは天動説を教えるようなものだといったら言い過ぎでしょうか。

  • このクーロン反発力の向きっておかしくないですか?

    http://imagepot.net/view/123780002752.jpg うえの画像を見て頂きたいのですが、上へ進む電荷に左から電荷がやってきたときにどういうクーロン反発力が働くかを描いた図ですが、 #2の電荷が#1の電荷の作る電場によって右に力を受けるのは分かりますが、#1が#2の電場を受けて下に力を受けるのはなぜなのでしょうか? もしかすると、#1が#2に近付いたときに、#2が上の方にいるからということかも知れませんが、そうすると#2の受ける力も右方向ではなく右上に描くべきではないのでしょうか?

  • 磁場と重力を考慮に入れた荷電粒子のラグランジアン

    (PCの都合上ドットをダッシュ(')で表しています) (問)質量m,電荷eをもつ粒子が3次元空間内を運動しており、その位置ベクトルを r=(x,y,z) とする。粒子がベクトルポテンシャルA(r)の中を運動するときのラグランジアンは、 L={mr'^2/2} + er'・A(r) で与えられる。 また、粒子に対し磁場のほかに一様重力も働いている場合を考える。鉛直上方をz軸の正の向きとし、磁場BはB=(B,0,0)で与えられる。 重力加速度の大きさをgとするとき、この系でのラグランジアンを求めなさい。 A(r)は陽には時間には依らないとする。 という問題ですが、g=(0,0,g)とすると、この系でのラグランジアンは単に L={mr'^2/2} + er'・A(r) -mg・r で合ってますでしょうか?

  • 相対性理論と放射光

    相対論的電子が磁場で曲げられるときに発生する放射光が前方に集中し、短波長の光が発生する理由を、特殊相対性理論んを使って定性的に述べよ、という問題なのですが、私にはどこから手をつけたら良いのか全く分かりません。分かる方教えてください。お願いします。