• ベストアンサー
  • すぐに回答を!

保存則(エネルギー、運動量、角運動量)はどのように適用すればよいのでしょうか?

大学編入の勉強をしているものです。力学なのですが、保存則(エネルギー、運動量、角運動量)にとてもつまずいています。 とても抽象的で申し訳ないのですが、 みなさんが力学の問題を解く上でのプロセスを教えてください。 (1)まず運動方程式か保存則(エネルギー、運動量、角運動量)を使うかの判断の方法。 (2)保存則を使おうと思うときはエネルギー、運動量、角運動量のそれぞれ成立するかは、どのように調べていけばいいのでしょうか? 力学的エネルギーの法則は、摩擦力などがなく保存力のみなら成り立つとのことなので考えやすいのですが、 運動量、角運動量の場合は、解答を見ると「保存する」とある際も、どうしても「重力があるなら外力あるじゃん」と思ってしまいます。 (3)重力が作用しているときでも、重力は外力にはならないのでしょうか? 水平方向、鉛直方向で考えればよいのでしょうか? 長くなりましたがよろしくお願いします。

共感・応援の気持ちを伝えよう!

  • 回答数3
  • 閲覧数791
  • ありがとう数4

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.3

(1)まず運動方程式か保存則(エネルギー、運動量、角運動量)を使うかの判断の方法。 運動のプロセスのすべては,運動方程式という微分方程式を積分することで得られるわけですが,それぞれの保存則は運動方程式のいわば「はんぱ」な積分の結果です。ですから,たとえば途中経過はともかく,ある特徴的な時点における位置や速さなどの結果だけを知れば良いというのであれば,保存則を用いるのが便利なのです。 (2)保存則を使おうと思うときはエネルギー、運動量、角運動量のそれぞれ成立するかは、どのように調べていけばいいのでしょうか? (3)重力が作用しているときでも、重力は外力にはならないのでしょうか? 力学的エネルギー保存の適用範囲は,おっしゃるとおり。運動量保存にせよ,角運動量保存にせよ,外力が作用していても外力どうしでつりあっていることが保証されていればいいわけですね。また,角運動量保存は実質的に中心力のみを受けていれば成立します。 いずれにせよ,運動方程式と各保存則との関係をしっかり学ばれるのがよいと思います。保存則は運動方程式から導出されるものであり,法則として独立したものではありません。ですから,運動方程式から保存則を導出する理論的なプロセスをしっかり理解されると,保存則の適用範囲とその限界が見えてきます。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

それぞれ詳しくありがとうございます。 大変よくわかりました。 ただ何が中心力でそぅでないかの区別が難しいです。

その他の回答 (2)

  • 回答No.2

(3)のみ。 重力は水平方向の運動には影響を及ぼさないので、水平方向のみを考えるときには考慮する必要がありません。 また、衝突前後の運動量の変化を見る場合などは、重力がかかるのは衝突中の一瞬だけなので、通常これを無視します。

共感・感謝の気持ちを伝えよう!

質問者からの補足

ありがとうございます。 衝突の際の重力の扱いはよく分かりました。 それで質問するきっかけとなった問題なのですが、 水平面内で回転できる円盤の縁を、昆虫が一周するという問題では、 内力のみが働き角運動量が保存されるとあるのですがなぜでしょうか? 内力とは何をさしているのでしょうか?  またなぜ外力は働かないのでしょうか? 先ほどの通り、水平方向の運動だから?垂直抗力と重力は釣り合っているから?でも摩擦力はどうするの?  と疑問だらけです。  新しく質問した方がいいのか迷いましたが、補足にしては長すぎるのですが補足とさせていただきました。

  • 回答No.1

重力は物体が運動していようと、静止していようと常にかかる力です。 変化はしません。 保存則は物体が運動する前後に他の力が働かない状態(重力のことを言えば、変化しない。向きも。)を言います。 仮に重力が変化したら、保存則は成り立たない。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

ありがとうございます。

関連するQ&A

  • エネルギー保存と運動量

     ┌―――――――――┐  |    m        |  |             |  └―○――┬――○―┘  ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄               │         │          │         ●m 摩擦は無視できる。 質量mの台車Aに質量mの物体Bを吊り下げて、Aを初速度Vで動かす。 紐が再び鉛直になったときのAの速さを求めよ。 といふ問題ですが 水平方向の運動量は保存される(んですよね?)ので mV=mV'+mv'     V'=Aの速さ、v'=Bの速さ エネルギーも保存される。 (1/2)mV^2=(1/2)mV'^2+(1/2)mv'^2 これを連立すると(V'、v')=(V、0)、(0、V) ってなります。 そこからどうして紐が鉛直のとき(V'、v')=(0、V)といえるのでしょうか?

  • 単振動と運動量保存則について

    「天井からばねで吊るしたおもり」に関する問題を解いていて疑問に思ったことが2つあります 物体が受ける力は (1)ばねから受ける力(kxとする) (2)重力(mg) の二つだと思います 解答には「(1)と(2)の外力が働くため運動量保存則は成り立たない」と書いてあったのですが、水平方向には外力からの力積が生じていない為、水平方向には運動量保存則が成り立っているのではないでしょうか? また、鉛直方向にかかる力である(1)、(2)がもし等しい時(つまりkx=mgの時)には力が打ち消しあい、鉛直方向にも運動量保存則が成り立つのではないでしょうか? どなたか詳しい方がいらっしゃいましたらご教示頂けたら幸いです

  • 力学的運動量とエネルギーの違い

    運動量とエネルギーの違いがイマイチ分からなくて困ってます。 たとえば、なめらかな平面で小球どうしが非弾性衝突した場合、力学的エネルギーは保存されませんが、運動量は保存されますよね? 非弾性衝突でエネルギーの一部が熱に変わるというのであれば、なぜ運動量が保存されるのでしょうか? 同様に外力が加わらない限り運動量が保存されるのであれば、なぜ力学的エネルギーはなぜ保存されないのでしょうか? しょぼい質問で申し訳ございませんがどなたか教えてください。一晩考えましたが、分かりませんでした。

  • 運動量保存について。

    質量mの小球を自由落下させ、傾き30度のなめらかな斜面に衝突させたところ、水平にはね返った。衝突直前の速さをv0として、衝突直後の速さvをv0を用いて求めよ。 という問題について質問です。 解説によると、斜面方向をx軸、斜面に垂直な方向をy軸にとると、x軸方向で運動量が保存するため、 x軸方向での運動量保存の式を立てて解いているのですが、 y軸方向では運動量保存は成り立っていないのでしょうか? y軸方向について、-mv0cos30°=mvsin30°としても計算がうまくいかず・・・。 y軸方向に外力は働いてないから運動量保存する、と思ってy軸方向で運動量保存の式を立てたのですが そもそもこの解釈が間違っているのでしょうか・・・。 どなたかもしよければ教えてください。

  • 運動量保存則に関する問題

    「エネルギーと運動量保存則に関係する以下の文章は正しいか誤りか示せ」という問いです。 このうち3は正しいように思いますがどう正しいのか、1と2はどう誤りなのかわかりません。 ご教授いただけますでしょうか。 1.力学的エネルギーの保存則は系が外から仕事をされても、系の力学的エネルギーが変わらないことを保証する。 2.イカなどが水を吹き出して進むのは運動量の保存則による。 3.高さが同じなら、物体が早く進むか遅く進むかによらず、物体の力学的エネルギーは変わらない。

  • ~運動方程式→エネルギーand運動量保存則?~

    僕は大学入試に向けてちょっとだけ頑張ってる受験生なのですが、(笑) 運動方程式等に関して質問があります。 ある先生に聞いた話なんですけど、 『エネルギー保存則も運動量保存則も運動方程式が元であり、変形したり積分したりすれば運動方程式から導くことが出来る』んですよね?? だから気になって、ホントかな~と思っていろいろ変形してたら   ma=F   m(Δv/Δt)=F   mΔv=FΔt 『おぉ、これは確かに力積とか運動量保存則っぽい!』 ってなったんですけど、これは正解でしょうか? また、エネルギー保存則はどうやって導くのでしょうか? これはまったくわからないんです!どなたか教えてください。 よろしくお願いします。m(_ _)m

  • 運動量保存則がちょっとわからなくなってしまいました。

    次の問題でわからなくなりました。 【水平な地上に置かれた大砲(M)が、水平とつくる角θの方向に砲身を向けて砲弾(m)を発射した。大砲と地面の間に摩擦がなく、砲弾は砲身に対して相対速度vで打ち出されるものとして、大砲の後退する速さV、砲弾が実際に発射される方向と水平との間の角θ'を求めよ。】という問題。 この問題を運動量保存則を使って解こうとしたのですが、垂直方向の運動量保存則を適用すると、mまたは垂直方向の速度v'sinθ'=0になって、矛盾してしまう気がする。 この場合は、地球が動いていると考えればいいのですか?

  • 運動量と角運動量の違いと慣性モーメント

    運動量と角運動量の違いと、慣性モーメントについて教えて頂けませんか? ●運動量P P=mv ●角運動量L L=rP L=Iω ●慣性モーメントI I=mr^2 この式まではわかるのですが、運動量と角運動量が具体的にどう違うのかがわかりません。 運動量にベクトルを加えたのが角運動量だと言う事は何となくわかるのですが。 特にLのベクトル方向について、なぜ逆向きになるのかなど教えてください。 あと、慣性モーメントについては理解が出来ません。 SI単位に直すとgm^2になるのはわかりますが、m^2というと面積のことなのでしょうか? もしそうであれば、gm^2は面積当たりの重さを表すものだと思うのですが。 手元にある資料を見てもよくわからないので、噛み砕いて説明していただけるとありがたいです。

  • 運動量の問題

    2回目の投稿です。 運動量の問題 困り度: 困っています 問題は画像に添付した通りです。 (3)まで解いた答えを書きます。 斜面とそれに垂直な方向で運動方程式を立ててやりました。 (1)t=(2*v0*sinθ)/(g*cosα) (2)l=(2*v0^2*sinα*cos(α+β)/(g*cos^2β) (3)θ=(pi/4)-(α/2) ここまでは正しいと思うのですが、この先おそらく漸化式になると思われますが、どんな状態になるかわかりません。弾性衝突なので力学エネルギーは保存され真上に上がるのでしょうか。 わかる方お願いします。

  • 運動量保存則について

    スマートフォンでokwaveを使っていて画像を添付できなくてすみません。 曲面ABと突起Wからなる質量Mの台が水平な床上にあり、台の左側は床に固定されたストッパーSに接している。Bの近くは水平面となっていて、そこからhだけ高い位置にあるA点で質量mの小球を静かに離した。小球は曲面を滑り降りて突起Wに弾性衝突し、台はSから離れ、小球は曲面を逆方向に上り始めた。床や台の摩擦はなく、重力加速度をgとする。 この時、衝突直前の小球速さをv_oとし、直後の小球と台の速さをそれぞれv_1, V_2とすると運動量保存則mv_1+MV_1=mv_oが成り立つ。 次にストッパーSを外して、台が静止した状態で小球をA点で静かに放す。 Wに衝突する直前の小球と台の速さはそれぞれいくらか。 答え 水平方向の運動量保存則から、はじめの運動量0が維持され、小球が右へ動けば台は左へ動く。Wに衝突する直前の小球と台の『速さ』をu, Uとすると、0=mu+(-mU) また力学的エネルギー保存則より、mgh=(1/2)mu^2+(1/2)mU^2 u=√(2Mgh/(M+m) U=(m/M)*√(2Mgh/(M+m) 質問です。 ストッパーSがある時には、運動量保存則が『mv_1+MV_1=mv_o』となり、ストッパーをとった時には運動量保存則の式が『0=mu+(-MU)』と異なっています。しかし、ストッパーがある時も最初、小球•台ともに静止しているのではじめの運動量は0で運動量保存則『0=mv_o=mv_1+MV_1』が成り立つのではないかと思ったのですが、これは間違っていますか? もし違っていれば、ストッパーの有無による運動量保存則の式の作り方の違いについて教えてください!!