• 締切済み
  • すぐに回答を!

e^(2x)*sinx  *は積 のテーラー展開は?

こんにちは。  f(x)=e^(2x)・sinX をテーラー展開して一般項を考えることをしています。  微分していきます。  f'(x)=2e^(2x)・sinX+e^(2x)cosX  f^(2)=4e^(2x)・sinX+2e^(2x)・cosX+2e^(2x)・cosX-e^(2x)・sinX となると思います。  さて、そもそもテーラー展開とはなんぞや?ということもありますが、この先どのように解を導けばいいのか、方法だけでも、あるいは 一般項だけでも教えてください。  よろしくお願いします。

共感・応援の気持ちを伝えよう!

  • 回答数3
  • 閲覧数984
  • ありがとう数5

みんなの回答

  • 回答No.3

sinx={e^(ix)-e^(-ix)}/2i をつかって書き換えるとできますよ。 e^(2x)sinx={e^(2x+ix)-e^(2x-ix)}/2i e^a=Σ{a^n/n!} (for n=0,1,2,,,∞) が任意の複素数aに対して成り立つので、まぁ、あとはできますよね。 複素数を使わないと簡単にかけませんけど、 一般項がすぐに決まると思います。 No.1さんの展開を検算につかったので、たぶんあってますよ。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

マグロウヒルの複素数の本を読んでしらべてみます。ありがとうございます。

関連するQ&A

  • フーリエ展開 微分方程式の一般解

    y''+y=f(x)という微分方程式の一般解を求める。 ただし、f(x)=x^2 (-π<x≦π) f(x+2π)=f(x)であるとする。 上記のような問題なのですが、まずf(x)をフーリエ展開すると、f(x)=π^2/3+4Σ(-1)^n/n^2となりました。 この後、係数比較を行うために、yn=Acosnx+Bsinnxとおき、yn'+yn=4(-1)^n/n^2となり、AとBの値を求めることができました。 しかし、この問題の解答はy=c1cosx+c2sinx+(π^2/3)+2xsinx+4Σ[2→∞]{(-1)^n/(1-n^2)n^2}cosnxとなるようで、四つ目の項の2xsinxの出所がよくわかりません。 4Σ[2→∞]{(-1)^n/(1-n^2)n^2}cosnxの部分は、nが2以上のときの場合を表していて、π^2/3はn=0のときの場合を表している。つまり、2xsinxという部分はn=1のときの場合を求めているのではないかというところまで推測できたのですが、何故このような2xsinxという値が出てくるのかわかりません。 n=1のとき、1-n^2が0になってしまうため、別に求めなければいけないというのはなんとなくわかるのですが、上手く2xsinxの値まで辿り着きません。 長くなりましたが、この問題についてわかる方、ご教授お願いします。

  • 解析学(テーラー展開等)の問題です。

    解析学(テーラー展開等)の問題です。 よろしくお願いします。 f(x)=1/√(x+1)のx=0のまわりのテーラー展開をx^3の項まで求めよ。 x=0のまわりのテーラー展開を用いて、次の極限値を求めよ。 lim(x→0){(sinx-x)/(e^x-1-x-(x^2/2))} ロピタルの定理を用いて、次の極限値を求めよ。 lim(x→0){(e^x+e^(-x)-2)/x^2} よろしくお願いします。

  • テーラー展開

    テーラ展開い「cosx-(1-x^2/2)がおよそxの何乗に比例するか」なのですがExcelを使ってsinの展開の仕方はわかるのですがcosの場合の展開の仕方がわかりません。 さらに今回は長い数式なのでどうすればいいのかさっぱり・・・ 誰か教えてください<m(__)m>

  • 回答No.2

関数f(x)が閉区間(a,b)でn回連続微分可能ならばa≦x≦bにおいて f(x)=sum(i=0 to n-1)[f(i回微分)(a)]×(x-a)^i/i!+Rn という級数に展開できるというのがTaylorの定理で、f(x)をこのように(x-a)の級数に展開する、またはTaylor展開するといいます。Rnは剰余項と呼ばれ、n→∞のときRn→0のときf(x)は解析的であるといわれます。要は関数を多項式であらわして計算をできるようにしようとするものです。   a=0にとるとき質問者のような展開が可能です。e^xもsinxも無限回連続微分可能ですので高次の項まで計算することによって精度を上げることが可能です。

参考URL:
http://ja.wikipedia.org/wiki/%E3%83%86%E3%82%A4%E3%83%A9%E3%83%BC%E5%B1%95%E9%96%8B

共感・感謝の気持ちを伝えよう!

質問者からのお礼

こんにちは。ありがとうございます。NO.1さんがマクローリン展開を示してくれました。  一般項はどこまで繰り返し微分をして考えると導けるかがわかりませんでした。  本をみても、e^(2X)・sinxの積の一般項はなかなか掲載されていなく。

  • 回答No.1
  • info22
  • ベストアンサー率55% (2225/4034)

テーラー展開は展開するxの値を指定しないと展開が出来ません。 マクローリン展開は、x=0におけるテーラー展開のことです。 どこを中心に展開するかのxの値を指定しないと問題になりません。 マクローリン展開なら f(x)=x +2*x^2 +(11/6)*x^3 +x^4 +(41/120)*x^5 + R(x^6) ここで、R(x^6)はx^6以上の高次の項の和です。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

お忙しい中でありがとうございます。なるほど。いましがたもネットと 微分積分の本をひっぱりだして、x=aのまわりの・・など読みました。 マクローリン展開で3乗まで求めたものと一致しました。

関連するQ&A

  • 最大値と最小値の求めかた

    0≦x≦πにおいて、関数f(x)=sin2x+a(sinx+cosx)の最大値、最小値を求める問題です。 aは正の定数とします。 f'(x)=2cos2x+a(cosx-sinx) =2(cos^2x -sin^2x)+a(cosx-sinx) =2(cos-sinx)(cosx+sinx)+a(cosx-sinx) =(cosx-sinx)(2cosx+2sinx+a) までは分かりました。 sinx+cosx=√2sin(x+45) sinx-cosx=√2sin(x-45) ですが、 ・cosx-sinxはどのように考えればいいのですか? (2cosx+2sinx+a) は(2√2sin(x+1/4π)+a)と表すことはできましたが cosx-sinxがわかりません。 この後どのように考えればいいのでしょうか?

  • Σ[n=1..∞]1/n^4=π^4/90を求める際,どの正規直交関数系を使えばいいのかの選択基準は?

    こんにちは。 [問]f(x)=x^2(x∈[-π,π])のフーリエ級数を求め,それを使ってΣ[n=1..∞]1/n^4=π^4/90を示せ。 [解] f(x)(=x^2)π^2/3+4Σ[k=1..∞](-1)^kcos(kx)/k^2=π^2/3-4cosx+cos(2x)-4/9cos(3x)+… これを正規直交関数{u_k(x)}={1/√2,cosx/√π,sinx/√π,cos(2x)/√π,sin(2x)/√π,…}を使って書き直すと 1/√(2π)・√(2π)・π^2/3+cosx/√π(-4√π)+sinx/√x・0+cos(2x)/√π・1+sin(2x)/√π・0+cos(3x)/√π・(-4√π/9)+… …(1) 従って,a_0=√(2π)/3,a_1=-4√π,a_4=0,a_5=-4√π/9,… 従って(1)は Σ[k=0..∞]a_k^2=a_0^2+a_1^2+a_3^2+a_5^2+…=2π^5/9+16π+π+16π/81+…=2π^5/9+16Σ[k=1..∞]1/k^4 …(2) 一方,∥f(x)∥^2=∫[π..-π](f(x))^2dx=∫[-π..π]x^4dx=2π^5/5 …(3) (2)と(3)をParsevalの等式「∥f(x)∥^2=Σ[k=0..∞]a_k^2」に代入して2π^5/5=2π^5/9+16πΣ[k=1..∞]1/k^4 ∴Σ[n=1..∞]1/n^4=π^4/90 の問題についてですが正規直交関数は色々あると思いますがこの問題では特に {u_k(x)}={1/√2,cosx/√π,sinx/√π,cos(2x)/√π,sin(2x)/√π,…} を使えばいい事とどのようにして知る得るのでしょうか?

  • 微分による不等式の証明

    x>0のとき sinx + cosx > 1+x-x^2 が成り立つことを証明したいのですが・・。 まず、f(x)=sinx + cosx -(1+x-x^2)とおいて f(x)'=cosx-sin-1+2x f(x)''=-sinx-cosx+2 となってしまい、答えに詰まってしまいました。 sinx+cosx=2ってあるんでしょうか?

  • tanxのマクローリン展開について

    「f(x)=tanxのマクローリン展開をn=3まで求めなさい」という問題について、悩んでいます。 f(x)=sin(x)やf(x)=cos(x)の例を参考に、f'(0)、f''(0)、f'''(0)より級数形式の一般項を求めようとしました。 tanx=sinx/cosxなので、f'=1/cos^2xですが、このままf''、f'''と求めるのは大変面倒な気がします。 最終的な回答は、x+x^3/3+2x^5/15+34x^7/315らしいのですが、こちらから一般項に辿り着けません。 わかる方がいらっしゃいましたら、教えてください。 できましたら、途中の進め方を詳しくお願い致します。

  • 4階の微分方程式の解き方を教えてください!

    問題で与えられる微分方程式は画像として添付しました。 (1) f(x)=0 のとき、この微分方程式の一般解 (2) f(x)=sinx のとき、この微分方程式の一般解 それぞれの求め方を教えていただけませんか? 自分で計算した結果 (1)y=(C1x+C2)cos2x+(C1x+C2)sin2x (A,Bは任意定数)となりました。 間違っているでしょうか?詳しい一般解の導き方を教えてください (2)特殊解をどのようにおけばいいのか分かりません  おき方と解法を教えていただきたいです

  • テーラーの定理について。

    テーラーの定理について。 sinx の原点の周りでのテーラー展開で3次の剰余項をR_3(x)としたとき, sin x=x+R_3(x) R_3(x)=-cos(c)x^3/3! (0<c<x) で原点の周りの適当な開近傍ではR_3(x)が無視するとあったのですが, どういうことなのでしょうか?cの値によって近傍を適当に取ればいいとは思うのですが, それで無視できる理由がわかりません。 よろしくお願いします。

  • テーラー展開

    f(x)=x^2-x+1について、x0(中心点)を5としてテイラー展開しなさいという問題です。 筆算の場合のテーラー展開はやったんですが微分できる回数が決まってる式の展開というのが分かりません。 途中の式を教えてください。お願いします。

  • テーラー展開

    x=0におけるテーラー展開を求める。 【問い】f(x)=(1-x)/(1+x) 【解答】f(0)=1,f'(0)=-2,f''(0)=4,f'''(0)=-12,f''''(0)=48なので 【答え】f(x)=1-2x+2x^2-2x^3+2x^4 とあるのですが,解答から解説にいく段階は何となくわかるのですが その前の解答の部分がわかりません。 教科書を見ているのですが,数字が並んでないせいかよくわかりません。 よろしくお願いします。

  • 平均値の定理 大学受験

    問題は、 平均値の定理を用いて、次の不等式が成立することおw証明せよという問題です。 |sin(x+h) - sinx|≦|h| 解答は、f(x)=sinxとおくと、f(x)は微分可能で、平均値の定理を用いると sin(x+h)-sinx = cos(x+θh)h------------* |cos(x+θh)|≦1より |sin(x+h) - sinx|=|cos(x+θh)h | =|cos(x+θh)||h|≦|h| 証明終わりとなっています。 ですが、私は、*のところがよくわかりません。 f´(x)=cosxだから、右辺はh*cosx となるべきではりませんか? どうして、cos(x+θh)hとなっているのでしょうか? よろしくお願いします。補足が必要であれば、させていただきます。

  • 1階の線形微分方程式

    1階の線形微分方程式 次の微分方程式の解き方が分かりません。いちおう、自分でもやりましたが、答えを先生が教えてくれないので困っています。さらに(3)はさっぱりです。 (1)y'+2y=6e^x (2)y'+y=sinx (3)xy'-2y=x^3e^x (1),(2)の自分なりで解いてみた答え (1) λ+2=0 λ= -2 よってこの微分方程式の一般解は y1=Ce^-2x ここで、yp=k1*e^x とおいて、ypを微分方程式内に代入をすると、 yp'+2yp=k1*e^x+2k1*e^x=3k1*e^x=6e^x k1=2 y2=2e^x よって y=y1+y2=C*e^-2x+2e^x (2) λ+1=0 λ= -1 よって、求める一般解は y1=Ce^-x ここで、特殊解を考えると yp=L*sinx+M*cosx yp'=L*cosx-M*sinx これを微分方程式に代入して yp'+yp=(L*sinx+M*cosx)+(L*cosx-M*sinx)=(L-M)sinx+(L+M)cosx ここで、 L-M=1 L+M=0 これを解いて L=1/2,M=-1/2 y2=1/2*sinx-1/2*cosx よって、y=y1+y2=Ce^-x+1/2*sinx-1/2*cosx