• ベストアンサー

微分方程式の定数変化法について

y'+P(x)y=Q(x)を解く際に まず、y'+P(x)y=0の解を出し、その一般解を求めます。 定数変化法では、その解y=Aexp(-∫P(x)dx)のAをxの変数とみなし、一行目の微分方程式にあうようにAを決定するとしてとくわけなのですが、どうして それで一般性を失わないのでしょうか? それですべての一般解を表せているという事がうまく飲み込めません。

質問者が選んだベストアンサー

  • ベストアンサー
  • reiman
  • ベストアンサー率62% (102/163)
回答No.3

単に与式の解を y(x)=z(x)exp(-∫P(x)dx) としてみると z'(x)=Q(x)exp(∫P(x)dx) となり簡単解きやすくになると言うことだけです つまり y(x)=z(x)exp(-∫P(x)dx)とすれば y'(x)+P(x)y(x)=Q(x)⇔z'(x)=Q(x)exp(∫P(x)dx) と言うことです 等価変形だから一般性を失わないのです 例えば 方程式4x^2+4x+1=0 をとくときにz=2xとおき その方程式を z^2+2z+1=0 としてzについて解き それをz=2x⇔x=z/2に代入して解いても 一般性を失わないでしょう それと同じです

count2008
質問者

お礼

分かりやすい説明で飲み込めました。 式を簡単にするためにy(x)=z(x)exp(-∫P(x)dx)を代入しただけだったんですね。 ただの式変形なので一般性を失わないこともわかりました。 下の例もわかりやすかったです。

その他の回答 (2)

  • arrysthmia
  • ベストアンサー率38% (442/1154)
回答No.2

「定数変化法」という名前が良くないので、変な気がするのでしょう。 定数であったものを、後から変数とみなした …とは考えずに、 A(x) = y(x) / exp(-∫P(x)dx) で、新しい関数 A を定義したと考えましょう。 その際、y'+P(x)y=0 を解いたという exp(-∫P(x)dx) の由来は一旦忘れて、 どこからともなく唐突に y(x) / exp(-∫P(x)dx) という式を思いついた と考えたほうが、A(x) を考える意味が分かりやすいかも知れません。 極普通の、置換積分です。

count2008
質問者

お礼

あまり前後の意味合いは考えず、"突然"y=A(x)exp(-∫P(x)dx)を代入すると、式がきれいになるという、置換積分だったんですね。 ありがとうございました。

noname#111804
noname#111804
回答No.1

A(x)=C-∫[Q(x)exp(-∫P(x)dx)]dx となり、A(x)の中にすでに積分定数Cが入っているからです。

関連するQ&A

  • 定数変化法を用いて解く微分方程式について

    y''' - 3y'' + 4y' = 0 という微分方程式の一般解を求めよという問題なのですが、 まずy=e^λxとおいてこの式に代入して λ^3 - 3λ^2 + 4 = 0 ⇔(λ+1)(λ-2)^2 = 0 よって特解はλ=-1、λ=2からy=e^(-x),y=e^2x このあと、なのですが参考書では定数変化法を用いてy=a(x)e^2xを代入して求めるとあるのですが、 そこでそうせず、一般解が y = C1e^(-x) + Ne^2xになると考えて Nを定数変化法を用いてN = C2x + C3 であるので一般解は y = C1e^(-x) + (C2x + C3)^2x C1,C2は任意定数 となるという考え方であってるのでしょうか?はたまたこの式だからこういう考え方ができるというだけのでしょうか?

  • 連立微分方程式と特殊解について

    dx/dt=-3x-y, dy/dt=4x+2yの特殊解が定数A、B,mを用いて、x=Aexp(mt), y=Bexp(mt)と表されるとして、微分方程式の一般解を求める方法を教えてください。

  • 微分方程式

    第1問 dy   y~2-x~2 --=--------- (ヒントz=y/xと置換しなさい) dx    2xy 第2問 一階線形微分方程式  dy --+ycosx=sinx×cosx---(1)がある dx 1、この方程式の同次の微分方程式を解きなさい 2、定数変化法により、この微分方程式(1)の特解を求めなさい。 また、その時の一般解を求めなさい

  • 再び微分方程式の質問(2)です。

    全くわからず手が付けられません。ご回答よろしくお願いいたします。 微分方程式 y’+2y(2乗)-2y=0 について問1~問3について答えよ。  問1 問題の微分方程式は変数分離型である。変数を分離した積分として、次の(1)~(4)の中から正解を選べ。正解がないときは(5)を選べ。  (1) ∫1/y(y-1)dy=∫2dx  (2) ∫1/y(1-y)dy=∫2dx  (3) ∫1/y(y+1)dy=∫2dx  (4) ∫1/y(y-1)dy=∫1/2dx  (5) (1)~(4)に正解はない。  問2 問題の微分方程式の解として、次の(1)~(4)の中から正解を選べ。正解がないときは(5)を選べ。  (1) 一般解y=1±√1-Ce(2x乗)/2 (Cは任意定数)  (2) 一般解y=Ce(2x乗)/1+Ce(2x乗) (Cは任意定数)  (3) 一般解y=Ce(2x乗)/1+Ce(2x乗) (Cは任意定数)と特異解y=1  (4) 一般解y=Ce(2x乗)/1+Ce(2x乗) (Cは任意定数)と特異解y=0  (5) (1)~(4)に正解はない。  問3 問題の微分方程式の解y=y(x)で、y(0)=1/2をみたすものがy(x)=2/3となるxとして次の(1)~(4)の中から正解を選べ。正解がないときは(5)を選べ。  (1) 1/2log2  (2) 3/2  (3) log6  (4) 1/6  (5) (1)~(4)に正解はない。  以上、よろしくお願いいたします。

  • 微分方程式の特殊解

    申し訳ありませんが、教えてください。 (d^2y/dx^2)-(dy/dx)=e^x/(1+e^x) という2階の微分方程式で同次方程式の一般解は、 y=A+Be^x (A,Bは定数) となりますが、特殊解の求め方が分かりません。 お分かりになる方、教えてください。 よろしくお願いします。

  • 2階微分方程式が解けません

    [y''+y'/x-y/x^2=0 を解け] という問題を見かけたのですが,どのように解けばいいのかわかりません. (1)2階微分方程式にyが含まれないときはy'=pとおき,y''=dp/dxとして解く. (2)d^2y/dx^2=ky(k:定数)のときは公式がある. (3)y''+ay'+by=R(x)(a,b:定数,R(x):xのみの関数)のときは補助方程式の一般解と特殊解を求めて解く というのは教科書に書いてあったのですが,今回の問題はこの中のどの方法を使えば解けるのでしょか? 解答にはy=Ax+B/x(A,B:任意定数)とあります.

  • 微分方程式(非斉次)について

    微分方程式(非斉次)について質問させてください 問題 y''-3y'+2y=exp(2x) で自分は、特性方程式から u=Aexp(x)+Bexp(2x) を出しました。次に非斉次y''-3y'+2y=exp(2x)の特殊解を求めるために y1=aexp(2x)〔ただしaは定数〕 とおき解こうとしたのですが、その問題の解答には、『非斉次の特殊解を求めるとき、y1=aexp(2x)とおくことはできない。この場合はy1=xaexp(2x)〔ただしaは定数〕とおく』 と書いてあったのです。しかし、自分は何故 y1=aexp(2x)とおくことはできないか分かりません、お手数ですが教えていただけないでしょうか?

  • 微分方程式の問題で

    微分方程式の問題で 「a,bが任意定数のとき、次式が一般解になるような最小階数の微分方程式を示せ。  y = ax^2 + 2bx」 の答えがわかりません。 答えは一階の微分方程式で (dy/dx) + y = ax^2 + 2(a+b)x +2b となるのか 二階での微分方程式で x^2 * y" - 2xy' +2y = 0 となるのかで迷っていて、 一階の微分方程式が特殊解なのか一般解なのかの判断がつかないと言う状況です。 というのも教科書には 「限定状況を与えなければn階の微分方程式にはn個の任意定数を含む」 とあるのですがこの限定条件がわからなくて判断がつきません。 どちらが正しいのでしょうか?

  • 2階微分方程式の問題について

    下記の微分方程式についての質問です。 k * (d^2 y/dx^2) = a * y^2 …(1) ここで、k, a は定数、(d^2 y/dx^2)はyの2階微分(つまりy'')を表しています。また、* は積を表しています。 この2階微分方程式の一般解を求めたいのですが、詰まっています。 私のやり方は、まず(d^2 y/dx^2)=y'' として k * y'' = a * y^2 …(2) (2)の両辺に2y'をかけて k*y''*2y' = a * y^2 * 2y' これより ( k * (y')^2 )' = ( 2a* (y^3/3) )' 両辺を積分して k * (y')^2 = (2a/3) * y^3 + C1 …(3) (ただしC1は積分定数) このあと、変数分離すればとけるはずなのですが、 その先が詰まっています。 C1があるせいで積分できないのです。 これは一般解が求められないのでしょうか? また、初期条件は x=0でy=y0、x→∞でy=0 なので、x→∞でy'=0 と考えて、(3)よりC1=0 として考えると、 うまく変数分離できて y^(-3/2) dy = √(2a/3k) * dx ∴ y^(-1/2) = (-1/2) * √(2a/3k) *x + C2 (C2は積分定数) ∴ y = ((-1/2) * √(2a/3k) *x + C2)^(-2) …(4) 初期条件より C2 = y0^(-1/2) という感じで解いていったのですが、 どうやら解答は y = p * (x + q)^(-2) ただし、p = 6k/a, q = (a*y0/6k)^(-1/2) となるようです。。。 何度見直してもこうならないのですが、 私の計算ミスでしょうか。。。? (i) 式(3)の一般解 (ii) 式(4)が合っているか に関して、どなたか知恵をお貸しいただければ幸いです。 数式見づらくて恐縮です。

  • 微分方程式

    dx/dt=a^2-x^2 (aは実数の定数) (1)この微分方程式は1階の線形同次・線形非同次・非線形のどれにあてはまるか。 (2)この微分方程式の一般解を変数分離法で求めよ。 考えたことは(1)は非線形だと思いますが、合っていますか? (2)はdx/(x^2-a^2)=-dtと変形し、両辺積分します。  すると、1/(2a)log(|x-a|/|x+a|) = -t + C このあとx=が分からないです。 教えてください。お願いします