• 締切済み

定積分の問題(2)

[1]変数変換を用いて、次の重積分を求めよ。 ∬D √(a^2-x^2-y^2)dxdy , D={(x,y);x^2+y^2≦ax} 半径=aの球を考える。 x^2+y^2+z^2=a^2であり。 z=√(a^2-x^2-y^2)となり、被積分関数は上半球となる。 一方、積分領域は D={(x,y);x^2+y^2≦x} ={(x,y);(x-a/2)^2+y^2≦(a/2)^2} となり。 中心点(a/2、0)で半径a/2の低円の円柱が切り取る 体積をもとめることになります。 ・積分領域「-π/2、0」の場合 r=acosθ x=rcosθ y=rsinθ ヤコビヤン|J|=rとなります。 つまり dxdyーーー>rdθdr・・・・・(3) V=∫[-π/2、0]∫[0,acosθ]( r)√(a^2-r^2) dr dθ =∫[-π/2、0]dθ 「(-1/3){(a^2-r^2)^3/2}」 [r=0,acosθ] =a^3/3∫[-π/2、0](1-sinθ^3)dθ =a^3/3[(θ+cosθ-(1/3)cosθ^3)[θ=-π/2、0] =(a^3/3)(π/2+2/3)・・・・・(4) となり、正解 (a^3/3)(π/2ー2/3)になりません。 どこが間違いでしょうか

noname#111804
noname#111804

みんなの回答

  • info22
  • ベストアンサー率55% (2225/4034)
回答No.1

同じ質問を繰り返し投稿されますが 被積分関数の積分変数θが定積分範囲[-π/2,0]の -π/2≦θ≦0 の変域をとっているといった、積分の基本的なことを 理解して見えないことが、駄目なんでしょうね。 -π/2≦θ≦0の範囲では |sinθ|=-sinθ≧0ゆえ |sinθ|^3=|sinθ|*(sinθ)^2 =-sinθ*(sinθ)^2 =-(sinθ)^3 (≧0) 1-|sinθ|^3 =1+(sinθ)^3 となります。 >=∫[-π/2、0]dθ 「(-1/3){(a^2-r^2)^3/2}」 [r=0,acosθ] >=a^3/3∫[-π/2、0](1-sinθ^3)dθ この所で間違っています。 積分区間内では -π/2≦θ≦0なのでsinθ≦0であることから (1-(cosθ)^2)^(1/2) ←(≧0) ={(sinθ)^2}^(1/2) ←(≧0) =|sinθ|  ←(≧0) =-sinθ   ←(≧0) となります。 あなたの積分では =sinθ ←(≦0) としてしまっています(誤り)。 このことの理解が出来ていないため、正しく積分できないのでしょう。

noname#111804
質問者

補足

コメントありがとうございます。 やっとわかったような気がします。 積分区間内では -π/2≦θ≦0なのでsinθ≦0であることから (1-(cosθ)^2)^(1/2) ←(≧0) ={(sinθ)^2}^(1/2) ←(≧0) =|sinθ|  ←(≧0) =-sinθ   ←(≧0) となります。 第四象限であることから (-sinθ)^2+(cosθ)^2=1の公式を使うことでもあるようです。 やれやれです。

関連するQ&A

  • 定積分の問題

    [1]変数変換を用いて、次の重積分を求めよ。 ∬D √(a^2-x^2-y^2)dxdy , D={(x,y);x^2+y^2≦ax} 半径=aの球を考える。 x^2+y^2+z^2=a^2であり。 z=√(a^2-x^2-y^2)となり、被積分関数は上半球となる。 一方、積分領域は D={(x,y);x^2+y^2≦x} ={(x,y);(x-a/2)^2+y^2≦(a/2)^2} となり。 中心点(a/2、0)で半径a/2の低円の円柱が切り取る 体積をもとめることになります。 ・積分領域「-π/2、0」の場合 r=acosθ x=rcosθ y=-rsinθ 関数行列式|D|=-rとなります。 つまり dxdyーーーーーー>-rdθdr・・・・・(3) V=∫[-π/2、0]∫[0,acosθ](- r)√(a^2-r^2) dr dθ =∫[-π/2、0]dθ∫[ 「(1/3){(a^2-r^2)^3/2}」 [r=0,acosθ] =a^3/3∫[-π/2、0](sinθ^3-1)dθ =a^3/3[(ーθーcosθ+(1/3)cosθ^3)[θ=-π/2、0] =(a^3/3)(ーπ/2ー2/3)・・・・・(4) となり、正解 (a^3/3)(π/2ー2/3)になりません。 どこが間違いでしょうか?

  • 重積分を使って曲面積を求める問題でわからないところがあります。

    重積分を使って曲面積を求める問題でわからないところがあります。 球面x^2+y^2+z^2=a^2の円柱x^2+y^2=axで切りとられる部分の曲面積を求めよ(a>0) 自分の解法は  z(>0)について解いてz=√(a^2-x^2-y^2),積分領域D:x^2+y^2<=axの上にある曲面積を2倍して Zx=-x/(a^2-x^2-y^2), Zy=-y/(a^2-x^2-y^2)より 求める曲面積s=2∬D √(1+Zx^2+Zy^2)dxdy ここでx=rcosθ,y=rsinθと置くとJ=r,積分領域DはM:0<=r<=acosθ,-π/2<=θ<=π/2 S=∫(-π/2→π/2)∫(0→acosθ)ar/√(a^2-r^2)drdθ =2a^2[θ+cosθ](-π/2→π/2)=2a^2π となったのですが、解答は D:x^2+y^2<=a^2,y>=0の上にある曲面積を4倍して求めていて、 S=4∫∫D a/√(a^2-x^2-y^2)dxdy ここでx=rcosθ,y=rsinθと置いて、M:0<=r<=acosθ,0<=θ<=π/2 S=4∫(0→π/2)∫(0→acosθ)r/√(a^2-r^2)drdθ =4a^2[θ+cosθ](0→π/2)=4a^2(π/2-1) となって答えが違ってしまうのですが、何故だかわかる方がいたら助けてください。

  • 重積分の問題なのですが・・・。

    重積分の問題なのですが・・・。 ∬(y-6)(x^2+y^2)^(1/2)dxdy 積分区間はx^2+y^2<=4です。 x=rcosθ, y=rsinθとおいて、積分区間の条件より 0<=r<=2, 0<=θ<=2πとおける さらにこのときdxdy=rdrdθとなる 与式=∫[o<-2π]∫[0<-2]{rsinθ-6)(r^2cos^2θ+r^2sin^2θ)^(1/2)}rdrdθ   =∬{(rsinθ-6)r^2}drdθ   =∫[1/4sinθr^4-2r^3](0<-2)dθ   =∫(4sinθ-16)dθ   =[-4cosθ-16θ](0<-2π)   =(-4-32π)-(-4)   =-32π とマイナスになってしまいました、どこが間違えているのでしょうか? すみませんがよろしくお願いします。

  • 広義積分

    広義積分の問題なのですが,変数変換をすると,積分範囲がどうしても0→0になってしまいます…。 問題は D={(x,y)∈R^2|ε^2≦x^2+y^2≦1} lim(ε→0) ∬{(x^2-y^2)/(x^4+y^4})dxdy という問題なのですが,これを x=rcosθ,y=rsinθ,ヤコビアン=r D'={(r,θ)∈R^2|ε≦r≦1,0≦θ≦2π} ∫(1/r)dr∫{(cos^2θ-sin^2θ)/(cos^4θ+sin^4θ)}dθ =∫(1/r)dr∫{cos2θ/((cos^2θ+sin^2θ)^2-2cos^2θsin^2θ)}dθ =∫(1/r)dr∫{cos2θ/(1-(sin2θ)^2/2)}dθ =∫(1/r)dr∫{2cos2θ/(2-(sin2θ)^2)}dθ ここでt=sin2θと変数変換しようとしたのですが, そうすると積分範囲が0→0になってしまします。。。 どこか間違っているのでしょうか?? どなたか解説お願いします。

  • 2つの半径が等しい円柱を直交させたときの共通部分の体積

    2つの半径が等しい円柱を直交させたときの共通部分の体積 を求める計算の途中で行き詰まりました。アドバイスお願いします。 2つの円を y^2+z^2=a^2とx^2+y^2=a^2とします。 重積分で求めるとします。(別解もあるが) ∬√(a^2-y^2)dxdy 領域はx^2+y^2=a^2 0<x,y x=rcosθ、y=rsinθとおく。 ∬√(a^2-r^2sin^2θ)rdrdθ =∫a^2(1-cos^3θ)/3sin^2θdθ 0<θ<π/2 この積分で止まってしまいました。 アドバイスお願いします。

  • 円と直線の交差する範囲(重積分)

    重積分の範囲が、円の方程式と1次関数になっている場合の考え方をご教授願います。 ∬ y dxdy 積分範囲 x^2+y^2≦4 かつ y≧2-x x^2+y^2≦2^2 より、原点を中心とした半径2の円が考えられます。 極座標でx=rcosθ, y=rsinθとすれば、0≦r≦2 , dxdy=r drdθ 又、y=2-x のグラフは点(0,2)と点(2,0)で円周と接するので、 積分範囲は半径2の円の第一事象の部分 [0≦θ≦π/2かつ0≦r≦2] から [0≦x≦2かつ0≦y≦2-x] を引いた範囲が積分範囲と考えて良いのでしょうか? つまり、∫[0 2]dr∫[0 π/2] rsinθr dθ-∫[0 2]dx∫[0 2-x] y dy の式に累次積分できるんですかね? お手数をお掛けいたしますが、ご指導願います。

  • 3重積分について

    ∫(D) |x| + |y| + |z| (dx)^3 領域D:{x^2 + y^2 + z^2≦a^2, a>0}という問題で、解が(3πa^4)/2になるはずなのですが、極座標に変換する段階でいまいち分かりません。自分なりにやると、 x=rsinθcosφ, y=rsinθsinφ, z=rcosθ (0≦r≦a, 0≦θ≦π, 0≦φ≦2π)として、ヤコビアンがr^2 sinθになり、 ∫(D) |x| + |y| + |z| (dx)^3 =∫[0→2π]dφ∫[0→π]dθ∫[0→a]dr (r^2 sinθ)(rsinθcosφ+rsinθsinφ+rcosθ) このようになるのですが、自分がこれを解いていくと違った解になり、正解にたどり着きません。この変換が間違っているのでしょうか?単に途中の計算が間違っているのでしょうか? よろしくおねがいします。

  • 重積分・積分について

    重積分・積分の問題です。 1 ∫[0,2π]cosmxcosnxdx (m,n∈Z) まず和積公式を使って cosmxcosnx=1/2{cos(m+n)x+cos(m-n)x}とし、 0→2πで積分して 1/2[1/m+n*sin(m+n)x+1/m-n*sin(m-n)x][0→2π] ここまでは解けるのですがここから解くことが出来ませんでした。 積分区間が0のときはsin0=0ですので考えないとしたんですが、 2πの時にするであろう場合分けが思いつきません。 ここから回答をお願い出来ないでしょうか。 また自分の回答に自信があまり無いので 以下の問題の答えを教えていただけないでしょうか。 2 d/dx(arcsinx)^2 =2arcsinx/(√1-x^2) 3 ∫∫∫D dxdydz/{√1-(x^2+y^2+z^2)} (D={(x,y,z)∈R^3|x^2+y^2+z^2≦1}) 被積分関数は1/{√1-(x^2+y^2+z^2)}より x^2+y^2+z^2=1上の点が特異点の広義積分である。 ここでDa:x^2+y^2+z^2≦a^2とおく。ただしa>0とする。 極座標(r,θ,ψ)を定める。 x=rsinθcosψ y=rsinθsinψ z=rcosθ とおくと Daは Ea:0≦r≦a, 0≦θ≦π,0≦ψ≦2πにうつる。 またヤコビアンはr^2sinθである。 計算は省略します。 積分すると4πa^5/5となり、 lim [a→1-0]として 答えは4π/5 でしょうか。 文章読みにくくてごめんなさい。 回答お願いします

  • 重積分

    次の重積分について、問題を解いてください。 R>0として、領域D,D_+,D_- が D = {(x,y)|0≦x≦R,0≦y≦R} D_+ = {(x,y)|x^2+y^2≦2R^2,x≧0,y≧0} D_- = {(x,y)|x^2+y^2≦R^2,x≧0,y≧0} で 与えられるとき、以下の問いに答えよ。ただし、aは正の定数である。 (1) 2重積分∮∮D e^{-a(x^2+y^2)}dxdy,∮∮D_+ e^{-a(x^2+y^2)}dxdy,∮∮D_- e^{-a(x^2+y^2)}dxdyの大小関係を示しなさい。 (2) 2重積分 ,∮∮D_- e^{-a(x^2+y^2)}dxdyを計算しなさい。 (3) (2)の結果をR→∞としたときの極限値を求めよ。 (4) 定積分∮(0→∞) e^(-ax^2) dx = (1/2)√(π/a) を証明せよ。 途中式もお願いします。

  • 二重積分の問題です。ご協力お願いします。

    テスト勉強中にわからない問題がありましたので質問させていただきました。 よろしくおねがいします。 I=∬<D>{1/(x²+y²)}dxdy Dは、言葉で説明させていただきます。 Dは、x²+y²=4,x²+y²=1の二重になっている円の間の部分で、y>0を満たし,原点を通りx軸となす角が2π/3の直線(y=-√(3)x)よりもx軸の正の方向にある、食べかけのドーナツのような領域です。 恥ずかしながら、自分は次のようにして行き詰まりました。 外側の円と内側の円を別々に求めようとしました。 極座標で考えようとしてx-2=rcosθ,y=rsinθと置き、(2,0)を基準に考え、 π/2≦θ<5π/6ではr=4cos(π-θ) 5π/6≦θ<πではy=-√(3)xに極座標のパラメーターを代入して求めた r=-2√(3)/sin(θ+π/3) これらを使っていざ積分しようとしたら、(2,0)を基準にした極座標のパラメーターをつかうと I=∬<D>{r/(4+4rcosθ+r²)}dθdr になり、積分に困りました。 答えてくださる方がいらしたら、詳しく解説していただけると大変ありがたいです。