- ベストアンサー
- 暇なときにでも
確率の問題で・・・
1枚の硬貨を6回投げて、表が4回以上出る確率を求めよ。 という問題の解き方が分かりません。 どなたかご教授いただけませんでしょうか?
- lily200
- お礼率50% (6/12)
- 回答数2
- 閲覧数51
- ありがとう数1
質問者が選んだベストアンサー
- ベストアンサー
- 回答No.1
- YAMADAni
- ベストアンサー率32% (25/78)
6C4(1/2)^6+6C5(1/2)^6+6C6(1/2)^6 だと思います。 6C4(1/2)^6は6回投げて4回表が出る確率を示しています (正確には6C4(1/2)^4 × 2C2(1/2)^2 ですが) 以下同じように。 意味として、6回投げて4回表が出る出方は、6C4。4回表が出る確率は(1/2)^4 残り2回投げて2回裏が出る出方は2C2。2回裏が出る確率は(1/2)^2 これらを掛け合わせて6C4(1/2)^6になっています。 あとは同様に5回、6回を計算して合計すればよいでしょう。 分かりづらいと思いますがご勘弁を。
関連するQ&A
- 確率を教えてください 高一
1枚の硬貨を6回投げて 表が3回出る確率 表が出る確率 2/1 6C3でとくんですよね? 答えは16/5 なんですけど この答えにならないんですけど どこが違うのか アドバイスおねがいします。
- ベストアンサー
- 数学・算数
その他の回答 (1)
- 回答No.2
- futterm979
- ベストアンサー率33% (2/6)
裏表が出る確立は、各1/2でしょ! だから、表-表-表-表と続けて表が出る確立は、 1/2*1/2*1/2*1/2=1/16 十六分の一です。 読んでわからなければ、(たとえば1/2をかけるのはなぜ?など) 勉強が必要です。
関連するQ&A
- 確率の問題
統計学のテストが近いので勉強をしています。しかし、授業で使っている教科書には演習問題の略解しか載っていないので、解き方がわかりません。もし、わかる方がいれば教えてください。 1. ふつうの硬貨2枚と、両面が表になっているインチキ硬貨1枚が入った箱がある。この箱から1枚の硬貨を無作為に選んでそれを2回投げるとき、(a)2回とも表が現れる確率を求めよ。(b)選ばれた硬貨を3回投げて3回とも表が出たとして、それがインチキ硬貨であったという確率を求めよ。 2. 硬貨を1回投げる。表が出たらサイコロを1個転がし、出た目の数だけのドルを支払い、裏が出たらサイコロを2個転がし、出た目の合計の数だけドルを支払うものとする。そのとき、たかだか5ドルを支払えばすむことになる確率を求めよ。 3. 25セント銀貨14枚と5ドル金貨1枚の入った財布と、25セント銀貨15枚入った財布がある。第1の財布から5枚の硬貨をとり第2の財布へ移し、その後、第2の財布から5枚の硬貨をとり第1の財布へ移す。このような移し変えの後で、金貨が第1の財布に入っている確率はいくらか。 答えはそれぞれ 1.(a)1/2 , (b)2/3 2.5/9 3.3/4 となるみたいです。
- ベストアンサー
- 数学・算数
- 確率の問題
ずっと考えていますが、わかりません。どなたか教えてください。 問題:1枚の硬貨を繰り返し投げるとき、次の問いに答えよ。 (1)表が4回出るまで投げ続けるとするとき、何回目で作業が終了する確率がもっとも高いか。 (2)同じ面が4回出るまで続けるとするとき、作業が終了するまでにかかる回数の期待値を求めよ。 (1)については、n回目で作業が終わる確率をPnとすると、n-1回目で3回表が出ていると考えられ、n回目で表が出るとします。すると Pn-1=n-1C3x(1/2)^3x(1/2)^n-4 Pn=nC3x(1/2)~3x(1/2)^n-3 となるところまでわかりましたが、それからがわかりません。 よろしくお願いします。
- ベストアンサー
- 数学・算数
- 【確率】 有意水準の検定の問題です。
有意水準の検定の問題について、自分なりに答えを出してみたものの 正しい答えになっているか、いまいち自信がありません。 自分の解き方であっているか、わかる方ご指導お願いいたします。 【問題】 ある硬貨を6回投げたところ、6回とも表が出た。この硬貨について「表が出る確率が1/2である」という仮説を有意水準1%で検定せよ。 【自分の答え】 帰無仮説:硬貨の表裏が出る確率に差はない。(両側検定、危険水準α=0.01) 上記の仮説を検証する。 公式 P(n)=nCk・p^k・(1-p)^(n-k)より、 ={6!/(6!・0!)}・(1/2)^6・(1/2)^(6-6) ={6!/(6!・0!)}・(1/2)^6・(1/2)^0 ={(6・5・4・3・2)/(6・5・4・3・2)}・(1/2)^6 =(1/64) =0.015625 よって危険水準を大きく超えている為、帰無仮説は破棄される。 硬貨の表裏が出る確率には有意な差がある。 以上、よろしくお願いします。
- ベストアンサー
- 数学・算数
- 帰無仮説を用いた確率の問題
以下の問題を解いてみたのですが、これでいいか自信がありません。 わかるかた、ご指導のほど、よろしくお願いします。 【問題】 ある硬貨を8回投げたところ、表が6回、裏が2回出た。 この硬貨について「表が出る確率が1/2である」という仮説を 有意水準10%で検定せよ。 【自分の解答】 帰無仮説:硬貨の表裏が出る確率に差はない。(p=0.5、両側検定、危険水準α=0.10) 上記の仮説を検証する。 表が6回以上出る確率を計算する。 P(n)=nCk・p^k・(1-p)^(n-k)より、 ・表が6回 P(n)=(8!/(6!・2!))(1/2)^6・(1/2)^(8-6) =((8・7・6・5・4・3・2)/(6・5・4・3・2・2))・(1/2)^8 =(28/256)=(7/64)…(1) ・表が7回 P(n)=(8!/(7!・1!))(1/2)^7・(1/2)^(8-7) =((8・7・6・5・4・3・2)/(7・6・5・4・3・2))・(1/2)^8 =(8/256)=(1/8)…(2) ・表が8回 P(n)=(8!/(8!・0!))(1/2)^8・(1/2)^(8-8) =((8・7・6・5・4・3・2)/(8・7・6・5・4・3・2))・(1/2)^8 =(1/256)…(3) (1)(2)(3)を合計すると、(7/64)+(1/8)+(1/256)=(37/256) 両側検定なので、2倍して(37/128)=0.2890625 よって、危険水準を大きく超えている為、金仮設は破棄されない。 つまり、効果の表裏が出る確率には有意な差はなく、 偶然6回表が出るという仮説は排除できない。 以上、よろしくお願いします。
- ベストアンサー
- 数学・算数
質問者からのお礼
ご丁寧かつ分かり易いご説明を頂き、本当にありがとうございます。無事に解決いたしました。 *2番目方も、どうもありがとうございます^^