• 締切済み

アルキメデスの公理を否定すると…

アルキメデスの公理が成り立たない数を考えています。 たとえば超実数というものがあるらしいですね。 そこで、「自分なりの超実数」を考えてみました。 #一般的なものとは異なります。 実数は、通常の定義を満たすものとします。 矛盾起こしてませんか? --- ここから --- すべての実数は、超実数を元とする連続体濃度の開集合である。 a+0=a で定義される 0 は、0.000…で表される超実数の集合である。 可算個の桁数では超実数を正確に記述できない(区別できない)。 超実数は、加法と乗法の単位元、逆元を持たない。 超実数は、加法と乗法の結合法則、交換法則、分配法則を満たす。 超実数同士の四則演算は、ただ一つの超実数に対応する。 --- ここまで --- なお、各項目を証明しろと言われても困ります。 #本当は、もっと続きがあります。

みんなの回答

  • c_850871
  • ベストアンサー率53% (49/91)
回答No.1

私はこれには全く疎いですが,これはおかしいですね. >超実数は、加法と乗法の結合法則,交換法則,分配法則を満たす. とあるのに >超実数同士の四則演算は,ただ一つの超実数に対応する. 減法,除法が成立しないのに,四則混合と書いておられることが矛盾であると思うのですが. いかがでしょう?

fusem23
質問者

お礼

減法、除法が成立しないという訳ではないのですが、何をそういうのかについては難しいものがあります。 その仕方によっては、確かに矛盾になる可能性がありますね。 #実は、加法さえ定義できていないので、希望を書いたに過ぎないかも… ありがとうございました。

関連するQ&A

  • ある代数系で 0^0=1 とすることについて

    体と言われる代数系においては、0に逆元0^-1はありません。 従って、0^0=0^-1*0^1=1 とはされていません。 逆に言えば、体でなければ、0に逆元が存在し、0^0=1 とすることができるだろうと予想されます。 次のような代数系を定義します。 -- ここから -- 集合X = {0, 1} とする。 加法を以下のように定義する。 0+0=0, 0+1=1 1+0=1, 1+1=0 乗法を以下のように定義する。 0*0=1, 0*1=0 1*0=0, 1*1=1 この代数系では、体での基本法則は以下のようになる。 ・交換法則と結合法則は、加法と乗法で成立する。 ・加法単位元は0で、-0=0, -1=1 となる。 ・乗法単位元は1で、1/0=0, 1/1=1 となる。 ・0≠1。 ・分配法則は成立しない。 -- ここまで -- この代数系で、べき乗を定義します。 べき乗:a^1=a, a^(n+1)=a^n*a より 0^1=0, 0^2=1, 0^3=0, … 1^1=1, 1^2=1, 1^3=1, … さらに a^-1=1/a, a^-n=(a^-1)^n より 0^-1=0, 0^-2=1, 0^-3=0, … 1^-1=1, 1^-2=1, 1^-3=1, … そして a^0=a^-1*a より 0^0=1 1^0=1 となります。 以上の結果から、次のことが分かります。 加法の単位元を0で表し、乗法の単位元を1で表すとき、0^0=1となる。 …という例が存在する。 つまり、0^0が未定義なのは、体に固有の問題であり、 分配法則が成立しない代数系では、0^0=1となることがある。 ここまでの計算とこの結論は妥当ですか?

  • σ-加法族の公理に対する期待とは?

    こんにちは。早速ですが、ルベーグ積分を勉強しています。 そこで可測集合を定義するために、σ-加法族の公理を考えていますが(加算和で閉じる、補集合で閉じるなど) そもそも、これは何を狙ってこの公理を考えているのでしょうか。 この公理から、ボレル集合など理論が展開されていくのは分かるのですが、いまいち狙いが掴めません。直感的に"面積がみたすべき性質"を期待しているということでしょうか。

  • ペアノの公理の5番目の公理(いわゆる数学的帰納法)

    ペアノの公理の5番目の公理(いわゆる数学的帰納法の原理)について、 なぜこれが自然数の定義に必要なのか気になって、考えたり調べたりしています。 (つまり、1~4の公理だけでは何が不十分なのかについてです) そんな中、自然数の加法を定義するときに公理5が必要であるということを聞きました。自然数の加法を定義するときに公理5が必要な理由について、 ご教示、またはアドバイスいただけないでしょうか。 もうすこし具体的には、 N=(N,S,0) S:successorの写像 において、以下のように加法(二項演算a)を定義するとき (i) a(x,0) = x (ii) a(x,S(y)) = S(a(x,y)) この(ii)の定義の際に必要だと思いますが、 どのように第五公理が効いているのかが理解できていません。

  • 第2可算公理

    X,Yが第2可算性を持つ位相空間のとき、X×Yも第2可算性を持つことを示せ。 という問題です。 第2可算性を持つ⇔位相空間が可算集合からなる基を持つ で定義されています。 更に、 位相空間において、β⊂Oは、任意の開集合がβの要素の和集合で書けるとき、位相Oの基と言います。 証明の方針がいまいち分からないので、どなたかアドバイスもしくは証明をお願いします。

  • 選択公理について

    選択公理が当たり前すぎてよくわからなくなりました。 まず、ここでの選択公理は、添字集合Λ上の添字付き集合族(A_λ)_[λ∈Λ]が、どのλ∈ΛについてもA_λは空集合ではないとき、この添字付き集合族の直積集合は空集合ではない。記号では、 Π_[λ∈Λ] A_λ=φ と言う事とします。 しかし直積集合は、 Π_[λ∈Λ] A_λ ={(a_λ)_[λ∈Λ] | a_λ∈A_λ, λ∈Λ} と定義されるので、そもそも(a_λ)_[λ∈Λ]は、Π_[λ∈Λ] A_λに属すので空でないのは当たり前なのではないでしょうか? つまり、直積集合の定義自体によって、選択公理はすでに言えてるのではないでしょうか?

  • 有理数もペアノの公理を満たす?

    ペアノの公理を満たすものを自然数と言うそうですが、 私は可算無限集合ならペアノの公理を満たすと思います。 そうすると、有理数も可算無限集合なので、 有理数は自然数となってしまいます。 有理数は自然数でないので、 ペアノの公理を満たさない筈ですが、 ペアノの公理を満たさないと何故言えるのか分かりません。 何方か教えていただけないでしょうか? 私の言っているペアノの公理は、  集合N,N の元e,写像φ : N → N が、   (1) φ は単射である   (2) φ(N) ⊂ N\{e}   (3) M ⊂ N ∧ e ∈ M ∧ φ(M) ⊂ M ⇒ M = N です。 (1)と(2)を満たす写像φを定義でき、 ∃e ∈ N;φ(N) = N\{e}である。 と解釈しています。

  • ある3元の代数系で 0^0=1 とすることについて

    体と言われる代数系においては、0に逆元0^-1はありません。 従って、0^0=0^-1*0^1=1 とはされていません。 逆に言えば、体でなければ、0に逆元が存在し、0^0=1 とすることができるだろうと予想されます。 この質問では、以前の質問の回答を踏まえて、3元で考えます。 http://okwave.jp/qa/q7989312.html 次のような代数系を定義します。 -- ここから -- 集合X = {0, 1, Z} とする。 加法を次のように定義する。 0+0=0, 0+1=1, 0+Z=Z 1+0=1, 1+1=0, 1+Z=Z Z+0=Z, Z+1=Z, Z+Z=Z 乗法を次のように定義する。 0*0=0, 0*1=0, 0*Z=1 1*0=0, 1*1=1, 1*Z=Z Z*0=1, Z*1=Z, Z*Z=Z この代数系では、体での基本法則は以下のようになる。 ・加法において、交換法則と結合法則は成立する。 ・加法単位元は0で、Z以外は逆元 -0=0, -1=1 が存在する。 ・乗法において、交換法則は成立する。 ・乗法において、Zを除いた0, 1で結合法則は成立する。 ・乗法単位元は1で、逆元 1/0=Z, 1/1=1, 1/Z=0 が存在する。 ・Zを除いた0, 1で分配法則は成立する。 ・0≠1。 つまり、Zを除けば、この代数系は体になる。 -- ここまで -- この代数系で、べき乗を定義します。 べき乗:a^1=a, a^(n+1)=a^n*a より 0^1=0, 0^2=0, 0^3=0, … 1^1=1, 1^2=1, 1^3=1, … Z^1=Z, Z^2=Z, Z^3=Z, … さらに a^-1=1/a, a^-n=(a^-1)^n より 0^-1=Z, 0^-2=Z, 0^-3=Z, … 1^-1=1, 1^-2=1, 1^-3=1, … Z^-1=0, Z^-2=0, Z^-3=0, … そして a^0=a^-1*a より 0^0=1 1^0=1 Z^0=1 となります。 以上の結果から、次のことが分かります。 加法の単位元を0で表し、乗法の単位元を1で表すとき、0^0=1となる。 …という例が存在する。 つまり、体に0の逆元を添加し、分配法則が成立しない代数系では、0^0=1となることがある。 ここまでの計算とこの結論は妥当ですか?

  • 自然数 0×∞ 集合を使って

    さらに修正しました。 以下において、数はすべて自然数(0を含む)とします。 自然数とその加法を  0 = {}  a + 1 = {{}} ∪ {x∪{x} | x∈a} という集合と写像だと考えます。 等号は、同じ集合(要素がすべて同じこと)を表します。 1 以外の加法は、結合法則が成立するように  a + (b + c) = (a + b) + c = a + b + c によって定義します。 自然数を具体的に示せば  0 = {}  1 = {{}} = {0}  2 = {{},{{}}} = {0,1}  3 = {{},{{}},{{},{{}}}} = {0,1,2} などになります。 等号には、次の性質が存在します。  0 = 0  a = b ならば a + 1 = b + 1 これと結合法則から  2 + 3 = 5 なども導けると思います。 加法を無限回行うことは  a + a + a + ... = Σ[k=1,∞]a などと表し、特に a = 1 を  1 + 1 + 1 + ... = Σ[k=1,∞]1 = ∞ と表します。 これを無限公理(を若干修正した)  ∃A (∀x∈a (x∈A) ∧ ∀y∈A (y∪{y}∈A)) を満足する最小の集合と定義します。 ∞ を具体的に示せば  ∞ = {0,1,2,...} になります。 a = ∞ であれば、無限公理を満足する最小の集合はそれ自身であり  ∞ + ∞ = ∞ となります。 乗法は  a × b = Σ[k=1,b]a で定義します。ただし、b = 0 ならば  a × 0 = 0 とします。 以上の定義に従って計算する時、 質問1:この式は正しいですか?  1 + Σ[k=1,∞]1 = 1 + 1 + 1 + 1 + ... = Σ[k=1,∞]1  Σ[k=1,∞]1 + 1 = 1 + 1 + 1 + ... + 1 = Σ[k=1,∞]1 あるいは ∞ を使って  1 + ∞ = ∞ + 1 = ∞ 質問2:この式は正しいですか?  0 × Σ[k=1,∞]1 = 0 あるいは ∞ を使って  0 × ∞ = 0 なお、∞ という記号に、ある集合を表す以上の意味はありません。 「加法を無限回行う」ことも、定義した演算のことです。 ただし、a ∈ b という関係を a < b で表すと  0 < 1 < 2 < ... < ∞ なので、自然数よりも大きな数と考えることができます。

  • 実数体について

    体とは, (1)加法に関してアーベル群 (2)乗法に関してアーベル群 (3)分配法則が成り立つ これらの条件を満たさなければならないはずですが,実数全体の集合は満たしているのでしょうか? (1)や(3)は当然満たしていることはわかります.しかし(2)はどうでしょうか? 実数は乗法においてそもそも”群”ではないので,もちろんアーベル群にもなりえないはずです. しかし色々調べてみても,「実数全体の集合は体になる」とあります. これはなぜなのでしょうか? そもそも自分のアーベル群の理解が違っているのでしょうか? 群のうち,可換なものがアーベル群ですよね? だとしたら,群となっていることは最低条件のはずです. 実数はそれを満たしていません. なのになぜ体になるのですか? よく分からないので教えてください.

  • 開集合

    開集合は可算個の開区間の和で書けることの証明が知りたい のですがどなたか式を使って示してもらえないでしょうか