内積の定義とは?

このQ&Aのポイント
  • 内積の定義とは、2つのベクトルの積を求めるものです。
  • 内積の一般的な定義は、ベクトルの大きさと方向から求める幾何的なものです。
  • 内積は分配法則が成り立ち、特殊な例として直交デカルト座標があります。
回答を見る
  • ベストアンサー

内積の定義について

2つのベクトルについての内積の定義として、以下のようなものがあります。 A=(A1,A2,A3),B=(B1,B2,B3) 内積 ⇒ A.B=A1B1+A2B2+A3B3 これは一般的な内積の定義ではなく、基底ベクトルがお互いに直交しているという特殊事情の場合のみに限定だと思います。斜交座標では基底ベクトルはお互いの直交性がないので上記のような内積にはならないと思います。 そうすると、内積の一般的な定義はどうなると考えるべきでしょうか。 A.B=|A||B|cos という幾何的なものでしょうか。また、内積は分配法則が成り立つというのは自然とそうなるものでしょうか。 すなわち、A=(B+C) でA.D=B.D+C.Dという式が成立するということですが。 以下のようなことを考えています。 直交デカルト座標でものを考えてきた人間が曲線座標(特に直交性を仮定しない)で考える場合、内積などが再定義される必要がある場合がある。一般曲線座標での定義の方が一般的で、その特殊な例として直交デカルト座標がある、すなわち、一般曲線座標の定義だけしっかり覚えておけばよい。(これは極論で、演算のスピードアップなどの実用面としては冒頭の内積の計算方法の説明でもよいだろうとは思いますが。) いかがでしょうか。

質問者が選んだベストアンサー

  • ベストアンサー
  • hobbit-m
  • ベストアンサー率22% (17/77)
回答No.1

定義はリンクをどうぞ。 分配則も定義の一部ですね。

参考URL:
http://ja.wikipedia.org/wiki/%E5%86%85%E7%A9%8D
skmsk19410
質問者

お礼

ありがとうございました。 内積の演算がが幾何と結びついているとすると、定義と性質がゴチャゴチャになりそうなので質問しました。

関連するQ&A

  • ベクトル解析における発散演算の表式

    数学よりも物理工学系で取り扱う場合、ベクトル場F(=(fx, fy, fz))の発散は、d(fx)/dx+d(fy)/dy+d(fz)/dzと習うと思います。しかし、これは直交デカルト座標という特殊な座標(基底ベクトルが直交しかつ空間のどこでも一定)でのことだと思います。だから、これを定義だと思ったらダメなのではないかと思います。 一方で曲線座標系(直交曲線座標含む)では、基底ベクトルはローカル的であり、それ自体が座標系に従って変化する(微分がゼロでない)わけで、上記の式のようなわけには行かないと思います。 では、どのように定義されるのかウィキで調べると、座標面に対する法線方向ベクトルとの内積の面積積分のように示されており(ガウスの発散定理のようなもの)、それが根源的なものかと思いますが、それだと曲線座標系での表現ができません。曲線座標系で考える場合、ベクトル場の発散を座標系に依存しない形(ベクトル?)で表現し、それを各座標系版に示せば良いということになるようです。その場合、スケールファクターh(基底ベクトルが長さ1の単位ベクトルであるために長さ除すもの)などが多数現れるわけですが。 例えば∇・Fということでしょうか。∇(ナブラ)の曲線座標系での表現はどうなるかという問題はありますが。またベクトル場Fの方は実体は座標系に依存しませんが、表現は曲線座標系(局所的な基底で展開された表式)を用いて表示するものだと思いますが。 長くなってしまいましたが、曲線座標系や直交デカルト座標での発散の表式を求めるための式はどのように示されるのでしょうか。 直交曲線座標系の発散の式は誘導されて結果の表式はあるのですが、それがどのように誘導されるのか知りたいのでその表現の一歩前の式を知りたいと思っているのです。 よろしくお願いします。

  • ベクトル解析の発散の定義について

    ベクトル解析の発散はその定義とは何でしょうか。ただし空間なので3次元までです。その場合、座標系に依存しない形式で表現できないでしょうか。(ξ1, ξ2, ξ3)を一般的な3次元の座標系と考えてその中での定義です。その定義が明確になると、3次元のデカルト座標系とか円筒座標系とか球座標系などのような特殊な事情の座標系に特化した表現に至る(ブレークダウンする)と思います。 例えば、ベクトルVがあったときにその発散とは、 「Vのξi方向に微分したベクトルとξi方向の単位接線ベクトルとの内積をとりiについて和をとる」 というものだと直交デカルト座標の表現(テキストでお馴染み)も出るのですが。 また、直交曲線座標(球、極、円筒の各座標を包括する)での表現も出てきそうです。 このような感じの定義はないでしょうか。

  • ベクトルの表示,内積について...

    2つ質問があります. (1) 空間の位置ベクトルはよく(x,y,z)のように3つの実数で表されますよね.これは空間内に適当な座標系を考えたときの,ある点の座標だと思います.一方,空間内に適当な基底{e1, e2, e3}をとったときに任意のベクトルAがA=x e_1+y e_2+z e_3と表せることから,Aを(x, y, z)と書くと思います,この場合(x, y, z)は必ずしも空間内の点の座標と一致しないはずです.質問は,(x, y, z)と書かれたときに,これは空間内の点の座標であると見るのか,または,ある基底で線型結合を取る時の係数であると見るのか,どちらなのかということです.これは文脈によるのでしょうか? (2) (1)に関連するかもしれないのですが,高校で(a, b, c)と(x, y ,z)の内積はax+by+czであると習いますが,これは座標系の取り方に関係なく(直交座標や斜交座標に関係なく)定まるものなのでしょうか?

  • 曲がった空間でのベクトル演算

    div, rot, gradなどのベクトル解析に出てくる諸々の表現ですが、初学者としては直交デカルト座標という特殊な座標系での定義として覚えるものと思います(そして覚えこんでしまうわけです)。一方、曲がった空間でもそれらの定義があるわけですが、曲線座標というのはその特殊なものとして直交デカルト座標を含みますので、直交デカルト座標で、”こうだ”と覚えこんだ定義を一旦忘れてもいいのでしょうか。 人による、というのが答えだろうと思いますが。とにかく曲線座標の表現から直交デカルト座標での表現が演繹されると考えて良いでしょうか。 私としては初学者でも曲線座標系から始めて欲しいところですが、大多数の人はそこまで要らないということになるのかとは思いますが。

  • 曲線座標でのdiv,rot,grad

    div,rot,gradというベクトル解析の演算ですが、たいてい直交デカルト座標から入っていき、その後、発展として曲線座標に進みます。しかし、直交デカルト座標は曲線座標の特別なものですから曲線座標での表示式を示したら直交デカルト座標での表示は演繹的に示せるはずですね。それとも直交デカルト座標のdiv,rot,gradから曲線座標でのそれが演繹的に示されていると考えられるのでしょうか。一般曲線座標、直交曲線座標、直交デカルト座標の順に一般から特殊に向かっているはずですが。学びやすさがその逆ということは承知しています。よろしくお願いします。

  • 座標が曲がっているということ

    相対論というレベルの問題ではなく、この空間(3次元の直交デカルト座標+時間)を理解する上で座標軸が曲がったものを考えます。どうして曲がっているかというと対象としている具体的な物体の形状が曲がっているからです。場合によっては時間が経過すると形状そのものがヘビのようにグニャグニャと動くことも考えられます。さて、そこに力学の物理法則を導入します。ニュートンの運動方程式(偏微分方程式)みたいなものです。 力学はその導入は通常3次元のデカルト座標によるものだと思います。そこで曲がった空間ではその運動方程式はどうなるのかという問題があります。まず、ベクトル解析の記号を用いて座標系に依存しない形で運動方程式を書き直し、その後、具体的な曲線座標系の諸事情によって式形が決まっていくという図式のようです。例えば、極座標(x=rcosθ,y=rsinθという具体的変換が与えられる)の場合、直交曲線座標(基底ベクトルは場所ごとに変化するが、直交性が成立する)などの性質を使いながら書き下すということになります(演繹する)。 大もとの方程式は座標系に依存しないで書かれている(ということになっている)ので、具体的な座標が式に含まれず、rot, grad, divなどベクトル解析の記号が用いられているわけです。ここで私は全く理解できない壁にぶつかります。rot, grad, divという演算は座標(x,yとかr,θとか)は示されていませんが、定義のうえでは直交デカルト座標(x,y,z)と結びついていると思います。 ベクトルFの発散はdirF=Fx+Fy+Fzということですから、しっかり座標軸と関連しています。だから、rot,grad,divというものを使ってベクトル的に式が展開されていても結局は直交デカルト座標と結びついています。ではそこから曲線座標の運動方程式が”演繹される”のでしょうか。 座標系の分類としては、 一般曲線座標→特殊→直交曲線座標→特殊→直交デカルト座標 ということですね。ですから直交デカルト座標で表示された運動方程式から一般曲線座標での運動方程式を”演繹”によって表示することに違和感を覚えてしまうのです。それともやはり演繹されるものなのでしょうか。 長文になってしまいました。済みません。よろしくお願いします。

  • 正規直交基底

    (問題) 3つのベクトルa=(1,1,1,1) b=(1,-1,1,-1) c=(1,1,-1,-1)がある。(表記が違いますが、列ベクトルです) 1.a,b,cが互いに直交していることを示せ。 2.a,b,cの正規直交基底を求めよ。 3.a,bc,の全てに直交するベクトルを1つ求めよ。 というものなのですが。疑問点があるので答えて頂ければ幸いです。 1.の直交を示すことはそれぞれ内積a・b a・c b・cが0であることから示せます。(これは正しいと思います) 2.の正規直交基底なのですが、これは互いに直交しているため、それぞれの大きさを1になるように正規化すれば良く、複雑な計算は必要ないですよね? また、問題は四次元のベクトルですが、3つだけで正規直交基底と言えるのですか? R^4の正規直交基底と問題2が示す正規直交基底は別物ですか? また、3で全てに直交するベクトルを1つ求めよとありますが、このベクトルを正規化すれば、 それらを全て合わせてR^4の正規直交基底ということでよろしいのですか? ちなみに全てに直交するベクトルdは(1,-1,-1,1)となりました。 質問を煩雑に羅列してしまい申し訳ないですが解答よろしくおねがいします。

  • ベクトルの直交について

    括弧付けたやつはベクトルだと思ってください d(r)=(ex)dx+(ey)dy+(ez)dz を曲線座標で表したい。一般の座標を、u1,u2,u3とすると、デカルト座標x、y、zはそれらの関数で表せるから d(r)={ラウンド(x)/ラウンドu1}du1+{ラウンド(x)/ラウンドu2}du2+{ラウンド(x)/ラウンドu3}du3 で表せる。 これを d(x)=(a1)du1+(a2)du2+(a3)du3で表すと、一般に(ai)は直交しないと書いてるんですが、これがよくわかりません。 (r)=(x,y)で2次元極座標で表したら、(a1)、(a2)って直交しませんか? ただ、単にこの曲線座標が特殊で、直交するだけですかね? もしそうなら、直交しない曲線座標のとり方など教えてもらいたいです。 非常に分かりにくい書き方ですみませんが、直交しないというのを教えてもらいたいです。 あと、ラウンド記号とベクトルに打ち方もわかりません。。。 お願いします

  • ベクトルの内積、どうしてそのように定義するの?

    簡単のために2次元ベクトルを考えます。 →       → a =(a1,a2), b=(b1,b2) とすると、 → →   →  → a ・ b = |a| ・ |b| ・cosθ =a1b1+a2b2 と内積が定義されますが、なんの理由、なんの目的があってそのような定義がされるのでしょうか?

  • 関数の内積の定義について

     ちょっと、というかかなり変な質問で申しわけないのですが。  私の持っているフーリエ解析の2つの参考書では区間 [a,b] で定義された区分的になめらかな関数 f(x)、g(x) の内積を、いきなり        b   (f,g) = ∫ f(x)g(x) dx ・・・・・・・ (#1)        a で定義しています。ま、定義ですからいきなりでもいいのですが、できればなぜこの定義でいいのか知りたいところです。  区間 [a,b] に n 個の点   a = x1,x2,x3, …… ,xn = b を設け   f1 = f(x1), f2 = f(x2), …… , fn = f(xn)   f↑= (f1,f2, …… ,fn)   g1 = g(x1), g2 = g(x2), …… , fn = g(xn)   g↑= (g1,g2, …… ,gn) という 2 つの n 次元のベクトル f↑、g↑を作ります。f↑と g↑の内積は   f↑・g↑ = f1g1 + f2g2 + …… + fngn ・・・・・・・ (#2) となりますが、(#2) を n→∞としても (#1) に一致はしないものの、よい近似にはなると思います。  で、(#1) が関数の内積の定義として妥当であろうということは納得できるのですが、ちょっと気になることがあります。  (#2) は、x-y 直交座標では幅 0、高さ fngn の直線の '高さ' を足し合わせていることになります。  (#1) も同じように考えたいのですが、(#1) は高さ f(x)g(x) の足し合わせ(の極限)ではなく、幅 dx、高さ f(x)g(x) の短冊の面積の足し合わせ(の極限)だと思いますので、ちょっとなあ・・・・? という気もします。  短冊を x-y 直交座標で視覚的に捉えることはあきらめて、f(x)g(x) を高さ f(x)g(x)、幅 1 の短冊とでも見なせばいいのでしょうか?