• 締切済み
  • 困ってます

部分位相空間で"継承する"の意味は? 何を証明すればいい?

こんにちは。 Show that if Y is a subspace of X, and A is a subset of Y, then the topology A inherits as a subspace of Y is the same as the topology it inherits as a subspace of X. 「もし,YがXの部分空間でAはYの部分集合なら位相Aは部分空間Yがそれが継承する位相と同じように継承する」 という問題なのですか 位相(X,T)において位相空間(Y,{Y∩U∈2^X;U∈T})があってA⊂Y、、、、それから、、、 "継承する"っていういう意味でしょうか。何を示せばいいのでしょうか?

共感・応援の気持ちを伝えよう!

  • 回答数3
  • 閲覧数132
  • ありがとう数3

みんなの回答

  • 回答No.3

A⊂Y⊂X Xの位相をT_x Yの位相をT_y AのXに対する相対位相をT_ax AのYに対する相対位相をT_ay G∈T_ay とすると →G=A∩U, U∈T_y となる U がある →U=Y∩V, V∈T_x となる V がある A∩Y=A だから →G=A∩Y∩V=A∩V , V∈T_x →G∈T_ax →T_ay⊂T_ax G∈T_ax とすると →G=A∩V , V∈T_x となる V がある A=A∩Y だから →G=A∩Y∩V , Y∩V∈T_y →G∈T_ay →T_ax⊂T_ay →T_ax=T_ay

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • 位相空間・直積空間

    はじめまして。 数学科の学生です。 位相空間のテストを間近に控え勉強しています。 「集合と位相」 鎌田正良著 P107[3-4] A1を位相空間X1の部分空間とし、A2を位相空間X2の部分空間とすると、直積空間A1×A2は直積空間X1×X2の部分空間を示せ。 この問題が分かりません。 相対位相と直積空間を使うというのは分かるのですが、 直積空間の定義自体がしっくりきません。 どなたかお力をお貸しください。

  • 位相空間の証明

    (問題) 位相空間(X,T)とする。自然数の集合N={1,2,3,…}を添字集合とするXの部分集合族{An:n∊N}を考える。 An={1/n}⊂Rとおくとき、∪{(An ) :n∊N}と(∪{An:n∊N} ) ̅とは等しいかどうかを述べ、証明せよ。 ( )は閉集合を表しています テキストを読んでもまったく分かりません。 よろしくお願いします。

  • 位相空間で困ってます!

    独学で位相空間を勉強していますが、さっぱり分かりません。 参考書を読んでも、何がなんだか分からなくなってしまってる状態です。 まったく分からない相手に教えると思って、教えてくださるとありがたいです。 否定の線―が上に書けなかったので見にくいですが、よろしくお願いします。 位相空間(X,T)とする。 自然数の集合N={1,2,3…}を添字集合とするXの部分集合族{An:n∊N}を考える。 An={1/n}⊂Rとおくとき、 U{An:n∊N}〈←Anの上だけに―があります〉 と U{An:n∊N}〈←上すべてに―があります〉 とは等しいかどうかを述べ、証明せよ。

  • 回答No.2
  • koko_u_
  • ベストアンサー率18% (459/2509)

>よって >∀G∈T_ay,G=A∩U (但しU∈T_yx) =A∩(Y∩U) (但しU∈T_x) (∵def of T_yx) >=A∩U (∵A⊂Y) ∈T_ax 残念ながら誤っています。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

ありがとうございます。 >>∀G∈T_ay,G=A∩U (但しU∈T_yx) =A∩(Y∩U) (但しU∈T_x) (∵def of T_yx) >>=A∩U (∵A⊂Y) ∈T_ax > 残念ながら誤っています。 Xの位相をT_x,Xの部分空間Yの位相(つまり相対位相)をT_yx={Y∩U;U∈T_x}とすると AがXの部分空間の時の相対位相はT_ax={A∩U;U∈T_x}, AがYの部分空間の時の相対位相はT_ay={A∩U;U∈T_yx}となると思います。 それでT_ax=T_ayとなる事を示せばいいのですね。 よって ∀G∈T_ay,G=A∩U (但しU∈T_yx) =A∩(Y∩U) (但しU∈T_x) (∵def of T_yx) =A∩U (∵A⊂Y) ∈T_ax 大丈夫だと思いますが…。どこが間違っているのでしょうか?

  • 回答No.1
  • koko_u_
  • ベストアンサー率18% (459/2509)

A を Y の部分位相空間としたものと、X の部分位相空間としたものが同じ位相空間であることを示して下さい。 ここで言う inherit とは部分集合に相対位相を入れるという意味。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

>A を Y の部分位相空間としたものと、X の部分位相空間としたものが同じ位相空間であることを示して下さい。 > ここで言う inherit とは部分集合に相対位相を入れるという意味。 ありがとうございます。 Xの位相をT_x,Xの部分空間Yの位相(つまり相対位相)をT_yx={Y∩U;U∈T_x}とすると AがXの部分空間の時の相対位相はT_ax={A∩U;U∈T_x}, AがYの部分空間の時の相対位相はT_ay={A∩U;U∈T_y}となると思います。 それでT_ax=T_ayとなる事を示せばいいのですね。 よって ∀G∈T_ay,G=A∩U (但しU∈T_yx) =A∩(Y∩U) (但しU∈T_x) (∵def of T_yx) =A∩U (∵A⊂Y) ∈T_ax 逆も同様。 従って T_ax=T_ayとなるのですね。

関連するQ&A

  • 位相空間の問題についてです。以下の問題がわかる方い

    位相空間の問題についてです。以下の問題がわかる方いましたら、一問でもいいので、教えてくださると助かります…! 次の各集合が開集合あるいは閉集合いずれであるか判定せよ。 (1) (1,4)U{5}(Rの部分集合として) (2) {( x , y )∈R^2 ; 3 < x + y , x^2 > y}(R^2の部分集合として) (3) {( x , y , z )∈R^3 ; x^2 + y^2 + z^2≦ 1}(R^3の部分集合として)

  • 位相空間

    位相空間(X,T)の2つの部分集合A,Bについて (1) (A∩B)_ ⊂ A_∩B_    ※『_』は閉集合 この証明の方法を詳しく教えて下さい! 両辺は=(イコール)にはならないのでしょうか?? (2) Aが開集合のとき A∩B_ ⊂(A∩B)_ この証明方法も詳しく教えて下さい。お願いします。  

  • 位相空間

    位相初心者です。次の問題がよく分かりません。 問.実数直線R1の位相をTとする。   BをTに各無理数についてそれだけを元とするRの部分集合を   すべてつけ加えたRの部分集合族     B=T ∪ {{x}:x∈P}   とする。このBにおいて生成されたR上の位相T_Mに対して、   位相空間(R,T_M)をMで表す。     このMについて、次を求めよ。(証明付きで。)  (1) i(Q)、i(P) (iは内部を表す。)  (2) Qの閉包、Pの閉包 (1)は、Qは有理数全体の集合だから、Qに含まれるMの開集合全体の 和集合は、Φ となる。 (2)も同様に、Qを含むMの閉集合全体の共通集合はQである。 こんな感じでいいのでしょうか。もっと適当な証明があれば、 教えてください。

  • 「位相空間 (X、T)の二つの部分集合A,Bについて、 Aが開集合のと

    「位相空間 (X、T)の二つの部分集合A,Bについて、 Aが開集合のとき、 A ∧ (Bの閉包)が (A ∧ B)の閉包 に含まれることを示せ」 という問題がわかりません。 証明の仕方を教えて下さい。 教科書はちゃんと読んだのですが、挫折しました。 よろしくお願いします。

  • 位相空間と写像について学習している者です。

    位相空間と写像について学習している者です。 位相空間における閉包の概念等の理解に苦しんでいます。。。 では、質問させていただきます。 位相空間(X,Т)の二つの部分集合A,Bについて、 cl(A∩B) ⊂ cl(A)∩cl(B) ※cl(X)で集合Xの閉包(closure)を表すとします。 を証明したいのですが、過程が分かりません。 以下で、証明できていますか? x∈cl(A∩B) ⇒ x∈cl(A) かつ x∈cl(B) ⇒ x∈cl(A)∩cl(B) x∈cl(A) かつ x∈cl(B)にたどり着くまでの過程が足りない気がしています。 ご教授よろしくお願いいたします。

  • 位相空間における連続写像の条件について

    (X,T),(Y,U)を位相空間とし、fをXからYへの写像とする。 このとき、Xの部分集合Aに対し、f(cl(A))⊂cl(f(A))ならば、 fが(X,T)から(Y,U)への連続写像であるといえますか? ※cl(A)はAの閉包を示す。

  • 数学 位相空間の集合問題を教えてください。

    大学の授業の問題ですが、解き方が分かりません。教えてください。 位相空間(X,Τ)とする。 (1).部分集合A,BがA⊂Bならば、cl(A)⊂cl(B)である を証明せよ。 (2).自然数の集合Nを添字集合とするXの部分集合族{An:n∈N}を考える。この時、 ∪{cl(An):n∈N} ⊂ cl(∪{An:n∈N}) を証明せよ (※AnはA1,A2...という意味で用いています) (※Cl(x)はxの閉包という意味で用いています) (2)は(1)を使えば自明という解しか導けていません。何か落とし穴がありそうな気がしています... よろしくお願いします。

  • 位相空間(入門レベル)

    次の問題の証明がわかりません。 問.位相空間(X,T)の2つの部分集合A、Bについて、   Aが開集合のとき、           A∧B ̄ ⊂(A∧B) ̄   が成り立つことを証明せよ。 いくつかの参考書を見て、以下の回答例があったのですが、         x∈A∧B ̄ とし、A’をxを含む任意の開集合とすれば、  A∧A'もxを含む開集合で、  x∈B ̄であるためには (A∧A')∧B≠Φ でなければならない。  すなわち、A'∧(A∧B)≠Φ である。  したがって、          x∈(A∧B) ̄ この内容は理解できるのですが、証明として、4行目の「≠Φ でなければならない」が何となく気になります。(うまく伝えられないのですが)この回答は適当(ふさわしい)ですか。

  • 位相空間のコンパクト化の問題で困っています。

    最初に問題と回答を写します (X,〇)、(X',〇')、(X'',〇'') をそれぞれ 〇, 〇', 〇''を開集合系とする位相空間 f:X→X' g:X'→X'' を連続写像とする 問:Y⊂X がコンパクトであるとき f(Y) がコンパクトになることを証明せよ 答:ц={U(λ)|λ∈Λ} を f(Y) の開被覆とすると f が連続写像であることより ц'={f^(-1)・(U(λ)) |λ∈Λ} は Y の開被覆となる Y はコンパクトであるから,ある ц' の部分被覆 {f^(-1)・(U(λ1))、f^(-1)・(U(λ2))、…、f^(-1)・(U(λn))} が存在する。このとき {U(λ1)、U(λ2)、…、U(λn)} が ц の部分被覆になるのは容易に分かるので f(Y) はコンパクト ■ この最後のところで、どうして {U(λ1)、U(λ2)、…、U(λn)} が цの部分被覆になるのかが分からないので教えて欲しいです。 よろしくお願いします。別解などありましたら歓迎です。

  • 部分空間の証明

    Sを距離空間、Yをノルム空間とし、SからYへの連続写像全体の集合をC(S,Y)で表す。また、Cb(S,Y)=Fb(S,Y)∩C(S,Y)と置く。 ただし、F(S,Y)はSからYへの写像全体の集合で、Fb(S,Y)={u∈F(S,Y)| sup(t∈S)||u(t)||_Y<∞}でとします。 この時Cb(S,Y)はFb(S,Y)の閉部分空間であることを示せ。 定義として Xの部分集合YがXの部分空間である ⇔∀u,v∈Y,∀α,β∈Kに対してαx+βy∈Y まず感覚的にですが、Cb(S,Y)⊂Fb(S,Y)なので部分集合であることはOK 後は∀u,v∈Cb(S,Y)、∀α,β∈Kに対してαx+βy∈Cb(S,Y)を示す。 u,v∈Cb(S,Y)よりx,y∈Fb(S,Y) 任意のt∈Sに対して、 ||(αu+βv)(t)||=||αu(t)+βv(t)|| ≦||αu(t)||+||βv(t)||=|α|*||u(t)||+|β|*||v(t)|| ≦|α|sup(t∈S)||u(t)||+|β|sup(t∈S)||v(t)|| となるので有界であることは示せました。 後は連続性と閉集合であることを示したいのですが、 これはどのように示せばいいのでしょうか? 連続写像の和、スカラー倍は確かに連続写像となることは、 集合と位相あたりの本に書いてあったような気がしましたが…。