• ベストアンサー
  • すぐに回答を!

共振回路のある問題。

【 RLC直列共振回路において、回路に共振周波数の正弦波交流電圧 v(t) = √2・V0sin(ωt) を印加したとき、回路に流れる電流とL,C,R各素子の両端の電圧の瞬時値を現す式を求めよ。ただしV0は周波数によらず6Vであり、L=0.5mH,C=20pF,R=10Ωとする。 】 という問題があるのですが、解答で 【 回路に流れる電流は、電源の周波数が共振周波数のときは I = V0/R = 6 】 とあり、これは分かるのですが、その次に 【 これを用いると、R,L,Cの両端の電圧は、各々 VR = RI VL = jωLI VC = I/jωC 】 とあるのですが、ここが分かりません。共振周波数のときはIが最大のときなんですよね?そのときはコンデンサーとコイルのインピーダンスが両方無くなるときだったような気がするのですが、そうすると、上のような計算はできないと思うのですが…? よろしくお願いします。

共感・応援の気持ちを伝えよう!

  • 回答数1
  • 閲覧数304
  • ありがとう数3

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.1
  • me9753
  • ベストアンサー率66% (6/9)

共振周波数のときは確かにIは最大になりますが、 それは回路のインピーダンスが最小になっているということ。 このときコンデンサとコイルのインピーダンスはなくなっているわけではなくて、 互いに打ち消しあってるという感じです。 コイルのインピーダンスはjωL コンデンサのインピーダンスは1/jωC これは交流回路なら変わりません。 ただ共振周波数においてはこれらのインピーダンスを合わせると0になるというだけです。 つまりjωL+1/jωC=j(ωL-1/ωC)=0です。 このときコイルとコンデンサの分のインピーダンスは0なので無視して、抵抗の分だけを考えて計算して電流を求めているわけです。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

回答ありがとうございます。 とてもわかりやすかったです!

関連するQ&A

  • LC共振回路に矩形派を入力すると

    LC共振回路に共振周波数の矩形派を入力した場合、共振周波数の正弦波を入力したのと同じように共振するのでしょうか?

  • 共振回路が分かりません

    LCを使った共振回路について教えて下さい。 これは、直列にしても並列にしても単純にLによる誘導性インピーダンスとCによる容量性インピーダンスが等しくなる周波数においてインピーダンスが低下する現象であることは分かるのですが、 なぜそれだけでこのような鋭い共振ピークが出るのでしょうか? 共振周波数からずれた周波数であっても単に電圧の位相より電流の位相が遅れるあるいは早いだけでそこまで利得に影響するとは思えないのですが、どうなのでしょうか?

  • 共振回路の計算問題

    次の問題が分からないで、どなたか分かる方がいらっしゃらいましたら、よろしくお願いいたします。 「図のRLC回路が共振状態にあるとき、Lの両端の電圧は何Vか。」 共振状態ということで、CとLのインピーダンスが等しくなり、 V=RIより、CとLの電圧が等しくなるところまでは分かるのですが、その先が分かりません。 共振状態なので、Rの抵抗だけになるので、回路の電流は V=RIより、100/10=10A  のところまで求めました。 よろしくお願いいたします。

  • 並列共振回路

     LCR共振回路で、LとCが並列、Rが直列の並列共振回路の共振周波数を求めた上で電流と電圧の位相差の理論値を求めるとπ/2になりましたが、オシロスコープの波形からは位相差はどう見ても0でした。  この違いはなぜ生じるのですか?電気回路の教科書を読んでもさっぱりお手上げです、教えてください。

  • 共振回路とQ値について

    電気回路を勉強していて躓きました。 共振回路ではω=1/√LCのときにコイルとキャパシタのインピーダンスが逆向きで大きさが等しくなるため、電源側から見るとアドミタンスが0で抵抗のみがつながっているように見え、流れる電流が極値をとるということはわかったのですが、 並列共振回路においてコイルにのみ損失がある場合、 --L--r-- ---C--- ・共振周波数ω=1/√LC ・回路のアドミタンスが0 ・電流が極値をとる の3つの条件を同時に満たせなくなってしまうために、共振の条件として何を採用したらよいかがわかりません。 損失rが小さいためどれを採用しても実際の値では大きな差は出ないと思うのですが、素子の定数r,C,Lが具体的な数値でなく文字で与えられた場合はどれをもとに解いていけばよいでしょうか。 Q値に関しても同様で、 ・電源から流れ込む電流とコイルに流れる電流の比(並列共振) ・電源から流れ込む電流とキャパシタに流れる電流の比(並列共振) ・Q=1/ωCr ・Q=ωL/r 上のようにコイルにのみ損失がある場合、これらのどれを採用したらよいか上と同じような疑問があります。 また、上の回路において損失が電源の周波数に依存する場合について、これらの条件は変わりますか? (例えば添付画像のように損失が(ωM)^2/Rで表わされる場合) 質問が多くなってしまってすいません。 よろしくお願いします。

  • RLC共振回路の電源

    RLC共振回路について共振特性を調べる実験をしたのですが、この時直列共振回路には定電圧源、並列共振回路には定電流源を使用しました。これはなぜこのような電源を使用するのですか?様々な参考書に目を通しましたが、どれも確かに直列には電圧源、並列には電流源を使用していました。しかしなぜその電源を使うのかは書いてありませんでした。

  • 共振回路での疑問

    共振回路についての疑問なのですが、 1,共振曲線のスロープが周波数-電圧変換器として利用できるその応用回路例 2,電気回路の共振と機械振動での共振との相似点 3,携帯電話内における共振回路の役割 この3つが調べてもわかりません・・・。1つだけでもいいので、どなたか力をお貸しください。

  • 直列共振回路 Q値

    直列共振回路 Q値 直列共振回路についての問題です。R、L、周波数fは一定であり、Cが可変であるとします。 (a)共振するためのCの値、C0を求めなさい。 (b)共振時の電流Ioおよびコンデンサの両端の電圧Vcを求めなさい。 (c)|Im|=Io/√2となるコンデンサの容量をC1、C2とする。このとき、Q値が次式で近似されることを示しなさい。 Q=2C0/(C2-C1) (a)(b)は自力で解きました。 (a)ω=2πf=1/√(LC0)よりC0=1/4L(πf)^2 (b)|Im|=Em/√(R^2+(ωL-1/ωC)^2)   (a)のとき、|Im|=Io=Em/R Vc=Io・1/jωC0=-2πfLEm/R 問題は(c)なのですが、とりあえず条件に合うよう立式しました。 |Im|/Io=√2 ⇔ωL-1/ωC=±R +RのときのCをC2、-RのときのCをC1としたら、 2C0/(C2-C1)=2πfL/R+r/2πfL …(1) ここで、Q=√(L/C0)/R=2πfL/Rであるから、(1)に代入して、 2C0/(C2-C1)=Q+1/Q となってしまいました。何か考え方がおかしいのでしょうか。それとも「近似」されるから良い(Qがおおきな値だから1/Q→0)のでしょうか。どなたか教えてください。

  • 共振回路について。

    RLC直列共振回路を勉強しはじめた者です。 参考書を見ると、 ・共進角周波数ω ・Q値 ・比帯域幅 などの式が急に出てきたのですが、一応導き方も載っていたのですが、これらは導き方までちゃんと書けるように覚えなければいけないものでしょうか? あるいは、最初はとりあえず公式として式を覚えてしまったほうがとっかかりやすいのでしょうか? よろしくお願いします。

  • 共振回路

    共振回路の実験で共振曲線を描きました。 共振周波数の理論値と違う場所が頂点になったのですが、理論値の共振周波数と、測定値の共振周波数は違うものですか? また、グラフに共振周波数f0を書きこむ場合、測定値の方がf0になるのでしょうか? 教えてください。