- ベストアンサー
- 暇なときにでも
逆写像の求め方
以下の逆写像を求めなさい。 定義域と値域はどちらも実数です。 1.f(m)=4m+6 関数の逆写像を求める場合は、n=4m+6をmについて解けば良いのでしょうか? n-6=4m, m=(n-6)/4。したがって、f^-1(m)=m/4-3/2?で宜しいでしょうか? 2.f(m)=m^3-2 上のやり方が正しければ同様にn=m^3-2, n+2=m^3。mの3乗ってこの先どうにか出来るんでしたっけ。。すみません、逆写像の質問ではなくて数学の基礎なのかも知れませんが、ご存知の方いらっしゃったら教えて下さい。 あと、逆写像は、y=xの線を隔てて対称的な線を描く、という認識は正しいでしょうか。
- redhat_001
- お礼率75% (42/56)
- 数学・算数
- 回答数1
- ありがとう数1
- みんなの回答 (1)
- 専門家の回答
質問者が選んだベストアンサー
- ベストアンサー
- 回答No.1
- sanori
- ベストアンサー率48% (5664/11798)
こんにちは。 >>> 1.f(m)=4m+6 関数の逆写像を求める場合は、n=4m+6をmについて解けば良いのでしょうか? n-6=4m, m=(n-6)/4。したがって、f^-1(m)=m/4-3/2?で宜しいでしょうか? それでいいです。 逆関数です。 >>> 2.f(m)=m^3-2 上のやり方が正しければ同様にn=m^3-2, n+2=m^3。mの3乗ってこの先どうにか出来るんでしたっけ。 3√(n+2) と書けばよいです。実数のみですからね。 (n+2)^(1/3) とも書けます。 です。 >>> あと、逆写像は、y=xの線を隔てて対称的な線を描く、という認識は正しいでしょうか。 そうですね。 関数だったら、そうなります。
関連するQ&A
- 逆写像の求め方(ちょっと応用)
以下の逆写像を求めたいです。Rは実数です。 1.f(m)=log2(5m-4)の逆写像を求めよ。 定義域は4/5より大きい全ての実数で、値域は全ての実数です。 n=log2(5m-4), 2^n=5m-4, 5m=2^n+4, m=2^n/5+4/5。 したがって逆写像f^-1(m)=2^m/5+4/5。と解いてみましたが、あっているかどうかわかりません。答えになっていますでしょうか。 2.f(m)=m|m| 定義域と値域はどちらも全ての実数です。 この写像はmが正の数の場合は正の数を返し、負の数の場合は負を返すので、以下の二つに場合分けしました。 m>=0の場合はn=m^2と考え、m=√n、逆写像f^-1(m)=√m。 m<=0の場合はn=-(m^2)と考え、m^2=-n、m=√-n。逆写像f^-1(m)=√-n。。 自信が持てませんので、ご存知の方教えて下さい。負の数の平方根って、実数ではないですよね。。ということはやっぱりどこか間違ってます??
- ベストアンサー
- 数学・算数
- 写像の合成と定義域
写像について、逆写像と定義域がわからないので質問します。 問題は、Aを正の偶数全体からなる集合、Bを正の奇数全体からなる集合として、f:A→Bをf(x)=x-1によって定義する(1)f^(-1)を求めよ。(2)f^(-1)・f、f・f^(-1)(・は合成写像の記号のつもりです。)を求めてそれらの定義域、値域を明らかにせよ。 というものです。 解答(1) fはAからBの上への1対1の写像である・・・(ア)から、その逆写像f^(-1)は存在して、f^(-1)はBからAの上への1対1の写像である・・・(イ) またf(x)=x-1よりx=f^(-1)(x-1)、x-1=yとおくと、x=y+1よりy+1=f^(-1)(y)すなわちf^(-1)(x)=x+1。 (2) {f^(-1)・f}(x)=f^(-1){f(x)}=f(x)+1=(x-1)+1=x、{f・f^(-1)}(x)=f{f^(-1)(x)}={f^(-1)(x)}-1=x+1-1=x、 ここで(ア)(イ)よりf^(-1)・fはAからAの上への1対1の写像で、f・f^(-1)はBからBの上への1対1の写像である。したがって、f^(-1)・fの定義域、値域ともにA、f・f^(-1)の定義域、値域ともにB。 自分なりに考えてみて疑問があるのですが、問題(1)はf(x)の逆関数を求めればよい、しかしy+1=f^(-1)(y)としては、逆関数を求めるときのxとyを入れ替えるができないし、解答ではyをxに書き換えるといったことをしている。これが最初の疑問です。問題(2)では{f^(-1)・f}(x)のxはAの任意の要素で、{f・f^(-1)}(x)のxはBの任意の要素であると思うのですが、これはf(x)のxはAの任意の要素で、{f^(-1)(x)}のxはBの任意の要素であり。{f^(-1)・f}(x)=f^(-1){f(x)}とf^(-1)の要素がf(x)、f(x)の要素xはAの任意の要素だからと考えました。同様に{f・f^(-1)}(x)も考えましたが、自分の考えがあっているか疑問です。 どなたか、なぜ問題(1)でyをxに書き換えるかをしてよい理由と、問題(2)で自分の考えがあっているかと、間違っているときは、なぜ解答のようになるのかを教えてください。お願いします。
- 締切済み
- 数学・算数
- 逆関数の求められなくて困っています。
関数f(x)=2x^3-3x^2-12x+1の定義域と値域を適切に選んで、逆関数をいくつか求めよ、という問題の解き方が分からなくて困っています。 逆関数の求め方も分からないのですが、定義域、値域を選んで、という意味も分からないです。。。 どうか、よろしくお願いします。
- ベストアンサー
- 数学・算数
- 離散数学の逆写像に関して
質問は2つあります。 1つ目の質問 A⊆X、B⊆Yが集合として与えられていて fを写像f:X→Yとする。 集合A⊆Xに対してf(A)={f(x)∈Y | x∈A} 集合B⊆Yに対してf^-1(B)={x∈X | f(x)∈B} が定義されています。 この場合にf^-1(A)はf(A)の逆写像と考えて良いのでしょうか? 定義が f(A)={f(x)∈B | x∈A} f^-1(B)={x∈A | f(x)∈B} であればf( f^-1(x) )が成立するので逆写像は成り立つ。 ここまでが私の頭の考えられる限りです。 2つ目の質問 A⊆Y,B⊆Yとするとき、A⊆Bならば f^-1(A)⊆f^-1(B) を証明せよ。参考書で明らかであるため省略されていて困っています。 よろしくお願いします。
- 締切済み
- 数学・算数
質問者からのお礼
理解出来ました。 回答ありがとうございました。