• ベストアンサー
  • すぐに回答を!

円錐内部にある直方体の体積

底面の半径r、高さhの直円錐を考える。その内部に面abcd,面efghを正方形とする直方体を考える。ここで、頂点a,b,c,dは直円錐の側面上にあり、頂点e,f,g,hは直円錐の底面上にあるものとする。 直方体の高さをxとするとき、直方体の体積をr,h,xで表せ。 解答では平面aegcで切った断面で解答してあります。 僕は辺の中点を通る面(ad,bc,eh,gfの中点です)で切ってみたのですが、うまくいきません。 このやり方はダメなのでしょうか?よろしくお願いします。

共感・応援の気持ちを伝えよう!

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.1
noname#75273
noname#75273

(1) 面aegcで切断すると、切断面から相似を利用して、  x : h = (r - M) : r ⇒ M = (hr - xr^2)/h (Mは正方形の対角線の半分) ⇒底面の正方形の一辺 = M × √2 なので ⇒ M = (hr - xr^2)×√2 / h (2) 面(ad,bc,eh,gfの中点)で切断すると ad、bcの中点が、直円錐の側面に接地(接しない)しないため、 一般的に相似を利用して解くことはできません。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

よくわかりました。ありがとうございます。

関連するQ&A

  • 半径rの円を底面とする高さhの円錐の体積の問題

    お世話になります。 1.頂点から底面への垂直線で、頂点からの距離がy(0<y≦h)となる点を通り、底面に平行な切断面の面積を求めよ。 2.微小区間dyを考える時、その切断面の円柱の体積を求めよ。さらに、これを用いて、積分により円錐の体積を求めよ。 という、2問があり、問1については、比を利用して(y/h・r)^2・3.14、問2については∫(y/h・r)^2・3.14で円柱の面積がもとまり、円錐は円柱の面積の1/3なので1/3∫(y/h・r)^2・3.14という解答を作りました。ここで、微小区間dyの範囲を決めなくてはならなかったもか、この解き方であっているのか、重積分を使って解くべきなのか、解答がないため分かりません。

  • 微分、球と円錐の体積の最小値の問題

    問:頂点がz軸上にあり、底面がxy平面上の原点を中心とする円である直円錐がある。この円錐の側面が原点を中心とする半径1の球に接しているとき、この円錐の体積の最小値を求めよ。 答:(√3)π/2 問題集の解説: 円錐の底面の半径をr,高さをhとおくと、側面が半径1の球と接するから、{√(r*r-h*h)}=rh ・・・(1) より    r*r=(h*h)/(h*h-1) (1<h) 体積をVとおくと  V=(π*r*r*h)/3=(π*h*h*h)/3(h*h-1) であるから (π/3)*(1/V)=(1/h)-(1/h*h*h) f(x)=x-x*x*x (0<x<1)・・・(2)の増減を調べると、 f(x)は0<x<1で正の値をとり、x=1/√3 のとき最大値(2√3)/9をとるからVは、h=√3のとき最小値をとる。 質問: 1.何故、(1)が成り立つのでしょうか? 2.(2)が何を表しているのかがよくわかりません。(2)以降よくわからないので、解説お願いします。

  • 数学の質問です。体積が最大になる時の円錐の高さを求めたいです。

    微分の教科書を使って勉強をしていると、次のような練習問題がありまして、頭を悩ませております。 ◇◆◇◆◇◆◇◆◇◆◇◆◇◆◇◆◇◆◇◆◇◆◇◆◇◆◇◆◇ 問題: 図(添付画像)の直円錐で、頂点Oから底面の円周上の点Aまでの 長さaが一定であるとき、その体積が最大になる場合の高さを 求めよ。 ◇◆◇◆◇◆◇◆◇◆◇◆◇◆◇◆◇◆◇◆◇◆◇◆◇◆◇◆◇ 答えは「(√3/3)a」らしいです。 円錐の体積の面積は、「1/3×(底面積)×(高さ)」なので、この公式を用いれば、半径をrとすると、 直径の面積×π×h×1/3 =(2πr/3)h となるのですが・・・解答には"r"や"h"が出てきていないので、全部aを使って表すことができるということなのでしょうか? どうすれば体積を最大にする高さを求められるのかご教授いただきたいです(>_<) よろしくお願いします<m(__)m>

  • 直方体の最短距離

    『縦、横、高さがそれぞれ4,6,8の直方体ABCD-EFGHがある。直方体の表面を通って、頂点Aから頂点Gまでの最短距離を求めよ』という問題がありました。対角線の長さなどは簡単に求められるのですが、そもそも“直方体の表面を通る最短距離”というものがどこを通るものなのかわかりません。この問題には何か前提のようなものがあるのでしょうか?宜しくお願いします。

  • 円錐の体積と表面積

    私は今、数学の相似比を使った問題で悩んでいます。 『OHを高さとする円錐を、OHの中点Mをとおり底面に平行な平面で切り、上部の小さい円錐を取り除いたものとする。 底面の半径が6cm、MHの長さが4cmのとき、この立体の体積を求めよ。また、この立体の表面積を求めよ。』 体積はこのやり方で求めました。 V=(1/3)*π*6*6*8=96π 1:8=X:96でX=12π 96π-12π=84π  84πcm3 表面積も同様に片方の面積を求め、もう片方を出し、その答えを引いて、丸の面積分足したところ、答えは81πになりました。 しかし、解答シートを見ると、90πになるのです。 どうやったらそうなるのか分かりません。 よければ求め方を教えてください。

  • 直円すい台の体積

    この問題の場合、上部に小さな直円すいをつくってその体積を全体の体積から引けば答えが出ると思うんですけど、上部の直円すいの底面から頂上までの高さがわかりません!参考書によるとrになってるんですけど、なんでこうなるんですか???

  • 積分法による体積の求め方

    数学(3)の積分法による体積の求め方で分からない部分があります。 [問] 底面の半径がr、高さがhである円錐の体積Vを求めよ。 [解] 円錐の頂点を原点Oとし、頂点から底面に下ろした垂線をx軸にとる。0≦x≦hとして、x軸に垂直で、x軸との交点の座標がxである平面でこの立体を切ったときの断面積をS(x)で表すと “S(x):S(h)=x^2:h^2” となる。… とあるのですが、“”の部分がどのようにして導かれるのか分かりません。どこからx^2やらh^2が出てくるのでしょうか?どうか教えてください。

  • 円錐に内接する円柱の最大体積

    上の問題で直円錐の場合は回答が示されていますが、円柱の底面が円錐の底面と重なる場合しか示されていません。しかし、内接する円柱は3つのケースが存在するので、それぞれについて求め、どのケースが一番大きいか判定する必要があります。3つのケースの中で稜線に円柱の軸が平行の場合どうやって求めるかが分かりません。すなわち、稜線に直角な平面で円錐を切断したときの断面がどんな形(関数)になるかを知る必要がありますが、ここから先に進めません。(恐らく楕円になると想像しますが、証明が出来ないのです。) また、非直円錐の場合に拡張するとどうなるのでしょうか。これらに関してヒントになる文献などがありましたら紹介願います。

  • 【中学数学】直方体の中の四面体

    直方体ABCD-EFGHにおいてAD上に点Pをとる。 点B、G、H、Pを頂点とする立体の体積が40立方センチの時線分APを求めよ AB=9cm AD=10cm AE=8cm という問題が分かりません。 この立体は四面体で、40という体積が与えられているのでどこかの面(Pに関連のある面)の面積が分かるのだろうと思って考えているのですが、どこを底面とし、どこを高さとしていいのかがわかりません。 それとも三平方の定理をつかうのでしょうか。 自分で解くべきだとは重々承知していますが、いくら考えてもわからないのです。 どなたか親切な方、お願いします。 画像添付するつもりでしたが、何度やっても添付後に見る事が出来ず画像無しですみませんが、問題文から点の位置関係は分かると思います。

  • 円錐と円柱の重なり部分の体積を求める問題です

    大学入試問題なのですが、判らなくて困っています。 xyz空間内に底面がx^2+y^2≦4、z=0、頂点が(0,0,2)の円錐と、底面が(x-1)^2+y^2≦1、z=0、上面が(x-1)^2+y^2≦1、z=2の円柱がある(円錐、円柱ともに内部を含むものとする)。この円錐と円柱の共通部分をDとする。Dの体積Vを求めよ。 どなたか、教えて頂けると助かります。