ベクトル場と線積分の問題で困っています。助けてください!

このQ&Aのポイント
  • 一様なベクトル場E→=(Eo,0,0)を用いて、異なる経路C1とC2における線積分を求める問題です。
  • C1の場合、線積分の計算過程については一つの解釈がありますが、その正当性は疑問です。
  • C2の場合、現在の計算は間違っていると思われます。正しい答えを導くための解釈を求めています。
回答を見る
  • ベストアンサー

ベクトル場と線積分

電磁気の問題で大変困っています。 一様なベクトル場、E→=(Eo,0,0)があり、次の二つの異なる経路C1とC2について、点A(a,0,0)から点B(0,a,0)まで線積分せよ。 C1:X+Y=a、Z=0 C2:X^2+Y^2=a^2,Z=0(X,Y≧0) という問題です。 C1の場合、自分は、 ∫_c1E→・(dx,dy,dz)=∫_c1(Eo,0,0)・(dx,dy,dz)=∫Eodx(xはa→0) =[Eox]=-Eoa で一応問題の答えはこれであっているのですが、このような計算過程でいいのでしょうか? 次のC2では、自分は、 ∫_c2E→・(dx,dy,dz)=∫_c2 (Eo,0,0)・(dx,dy,dz) ここで、x=acosθ、y=asinθとおき、 dx=-asinθdθ、dy=acosθdθ θの変化は、0→π/2で、 上式=∫Eo・(-asinθdθ)=[Eoa・cosθ]=Eoa としました。 この問題の答えは、Eoaπ/2となると思うのですが。。。   確実にC2の場合は自分の計算は間違っていると思います。 どなたか説明して頂けませんか? お願いします。 同じくC1についても間違いのある点をご指摘して頂ければ幸いです。 お願いします。

質問者が選んだベストアンサー

  • ベストアンサー
  • siegmund
  • ベストアンサー率64% (701/1090)
回答No.2

siegmund です. 電磁気学(今は静電気の話ですね)で出てくる線積分は ∫_c (E→)・(dl→)  (見やすいように括弧をつけました)の タイプが普通です. これは,電場がもともと力であること(単位電荷に働く静電気力が電場)と, 仕事との関係から来ています. 仕事は最もナイーブには (力) 掛ける (距離)ですが, 力の方向と動く方向とが違っていれば内積になります. また,動いている間に一般には力が変わります. したがって,微小距離 (dl→) 動いたときの仕事(単位電荷あたり)が (E→)・(dl→) で,これを足し合わせたものが線積分と考えればよいのです. lirva-314 さんは C2 の計算で内積を成分できちんと処理されています. (E→) は常に x 方向を向いているのに対して, (dl→) は方向が場所によって変わるものの大体 -x 方向を向いています(端の点Aを除く). 第1象限の 1/4 円に沿っているのですから当然ですね. ですから,(E→)・(dl→) は常に負で(端の点Aを除く). その大きさは E_0 dl cosθですから E_0 dl より小さくなります. E_0 dl を C2 に沿って線積分すれば当然 -E_0 aπ/2 ですから (積分の方向と符号に注意), 問題の答は負でその大きさは E_0 aπ/2 より小さいことが 具体的な積分計算をせずにわかります. 線積分には他にも種類がありますが (たとえば,∫_c (E→)×(dl→),外積になっている,など), はじめに述べたように電磁気の話では今のタイプが一番ポピュラーです.

lirva-314
質問者

お礼

丁寧な説明をして頂き、ありがとうございました。 まだ完全に理解できたわけではないですが、ある程度見えてきた気がします。 わがままな質問で夜遅くまで付き合わせて本当にすいませんでした。 ありがとうございました。

その他の回答 (1)

  • siegmund
  • ベストアンサー率64% (701/1090)
回答No.1

C1 は合っています. C2 もきちんとパラメーター表示をして正しく計算していますが, 最後のところでうっかりしました. [Eoa・cosθ] で,上端がπ/2,下端がゼロですから, 結局 -Eoa が答です. Eoaπ/2 にはなりません. 問題で与えられたベクトル場 E→=(Eo,0,0) は保存力場ですから, 線積分の両端点が同じなら積分値は径路によりません.

lirva-314
質問者

お礼

なるほど、ありがとうございました。 保存力についてまだしっかり理解できてないようなので、とりあえずがんばります。 ところで、自分は 曲線C: x^2+y^2=a^2,z=0について 周回積分∫_cdl を求めよ、という問題の答えが、2πaとなることから、、経路C2では円の1/4なので、Eoaπ/2が答えだと予想したのですが。 線積分の計算式は、∫_cE→・dl→ であると、教科書で読んだのですが、 周回積分と質問の線積分は、関連性がなく、全くの別物なのでしょうか? 質問が重複してしまい申し訳ありません。

関連するQ&A

  • 微分の変形

    条件として x=e^z dx/dz=e^z=x y'=dy/dx=dy/dz*dz/dx=1/x*dy/dz なのですが、 y"=d^2y/dx^2=d/dx*(1/x)*dy/dz+1/x*d/dx*(dy/dz) の変形の理由がわかりません。 どなたかご教授お願い申し上げます。

  • ベッセルの方程式の問題の解き方が分かりません

     次のベッセルの方程式の問題の解き方が分かりません。  数学に詳しい方、よろしければご教示願えないでしょうか。 問題は、  ベッセルの方程式に帰着できるさまざまな方程式がある。示されている置換を 使って、次の微分方程式の一般解を求めよ。 4*x^2*y" + 4*x*y' + (x - ν^2)*y = 0 (√x = z)  このように解いてみました。  ベッセルの微分方程式は、 x^2*y" + x*y' + (x^2 - ν^2)*y = 0 で、  一般解は、 y(x) = A*Jν(x) + B*Yν(x) ここで、A と Bは任意定数、Jν(x)は第1種ベッセル関数、Yν(x)は第2種ベッセル 関数。 √x = z より、 dz/dx = 1 / (2*√x) y'とy"は、 y' = dy/dx = (dy/dz)*(dz/dx) = (dy/dz)/(2*√x) y" = d^2y/dx^2 = (d/dx)*(dy/dx) = (d/dz)/(2*√x)*(dy/dz)/(2*√x) = (d^2y/dz^2)/(4*x) ゆえに、 4*x^2*y" + 4*x*y' + (x - ν^2)*y = 4*x^2*(d^2y/dz^2)/(4*x) + 4*x*(dy/dz)/(2*√x) + (x - ν^2)*y = x*(d^2y/dz^2) + 2*√x*(dy/dz) + (x - ν^2)*y = z^2*(d^2y/dz^2) + 2*z*(dy/dz) + (z^2 - ν^2)*y = 0 となって、第 2項目が z*(dy/dz) にならず、2*z*(dy/dz) になってしまいます。  本の回答をみると、 A*Jν(√x) + B*Yν(√x) となっているので、問題の微分方程式を、 z^2*(d^2y/dz^2) + z*(dy/dz) + (z^2 - ν^2)*y = 0 に変形したのだと思いますが、どのようにすれば良いのでしょうか ?  同様に下記の問題も、 x^2*y" + x*y' + 4*(x^4 - ν^2)*y = 0 (x^2 = z) 同じ解き方をしたため、 z^2*(d^2y/dz^2) + z*(dy/dz) + (z^2 - ν^2)*y = 0 に変形できませんでした。  なにとぞよろしくお願いします。

  • 3重積分に関する問題

     R^3上の広義積分   (1)∫∫∫[R^3] e^(-Q(x,y,z)) dxdydz   (2)∫∫∫[R^3] (x^2 + y^2 +z^2)e^(-Q(x,y,z)) dxdydz ただし、Q(x,y,z)=(x y z) A t(x y z)、Aは、上から、    A=(2 -1 1)(|-1 2 -1)(|1 -1 2) で与えられているとします。上記の二つの積分を求めたいのですが、(1)に関しては次のように考えました。 (1)まず、Q(x,y,z)の標準化を考え、直行行列Pを用いてAを対角化します。そうすると、Pは(ただし、Aの固有値は4、1)、上から(最初の(1/√6)は係数)、  P= (1/√6)(√2 -√3  1)(-√2   0 2)(√2 √3 1) となり、U=tPAPと置くと、A=PUtPとなるので、   Q(x,y,z)=t(tP t(x y z)) U tPt(x y z)。 ここで、(x' y' z')=tPt(x y z)と置くと、  Q(x,y,z)=t(tP t(x y z)) U tPt(x y z)=(x' y' z')Ut(x' y' z')=F(x',y',z') と変換でき、またヤコビアンJ(x',y',z')=-2/3より、  ∫∫∫[R^3] e^(-Q(x,y,z)) dxdydz =(2/3))∫∫∫[R^3] e^(-F(x',y',z')) dx'dy'dz' となります。よって、  (2/3))∫∫∫[R^3] e^(-F(x',y',z')) dx'dy'dz' =(2/3)∫[-∞,∞] e^(-4x'^2)dx'∫[-∞,∞] e^(-y'^2)dy'∫[-∞,∞] e^(-z'^2)dz' ここで、x'=(1/2)sと置くと、上式は、 =(1/3)∫[-∞,∞] e^(-s^2)ds∫[-∞,∞] e^(-y'^2)dy'∫[-∞,∞] e^(-z'^2)dz' =(1/3)(∫[-∞,∞] e^(-s^2)ds)^3 ここで、∫[-∞,∞] e^(-x^2)dx=√π より、 =(1/3)π√π となりましたが、これで正しいでしょうか?また、(2)に関しては、  ∫∫∫[R^3] (x^2 + y^2 +z^2)e^(-Q(x,y,z)) dxdydz =∫∫∫[R^3] (x'^2 + y'^2 +z'^2)e^(-F(x',y',z')) dx'dy'dz' としたところで止まってしまいました。どうやって考えればよいのでしょうか? 以上です。どなたかお力添えしていただけないでしょうか? よろしくお願いします。長文失礼しました。

  • 立体V = {(x,y,z)|x^2 + y^2 <= z <= 1}

    立体V = {(x,y,z)|x^2 + y^2 <= z <= 1}の体積|V|を求めよ。 という問題で、まず、答えを見ずに自分で x^2 + y^2 <= 1 x^2 <= 1 - y^2 x <= ±√(1 - y^2) ∫∫∫_V dxdydz =∫[0,1]dz 2*∫[0,1]dy 2*∫[0,√(1-y^2)] (x^2 + y^2) dx =π/2. …と計算しました。本の答えは |V| = ∫[0,1] (∫∫_(x^2 + y^2 <= z) 1 dx dy) dz = ∫[0,1]πz dz =π/2. …となっています。これでは肝心の ∫∫_(x^2 + y^2 <= z) 1 dx dy の部分が分かりません。 その結果が πZ になっているので どこかに Z が紛れ込んでるはずですがどこか分かりません。 この式を ∫[a,b] dx ∫[c,d] 1 dy の形で教えて下さい。 お願いします。

  • ベクトル場の解析についてです

    f(x,y)=[-y/(x^2+y^2) , x/(x^2+y^2)]で与えられる二次元のベクトル場がある時 (1) 単位円上の点P(がx軸とπ/4の角度を成す原点からの直線が単位円と交わる点、第一象限) におけるf(x,y)を図示せよ (2) ベクトル場f(x,y)の発散を求めよ(原点は除く)   (3) 単位円に沿ったf(x,y)の反時計回りの積分 ∫f(x,y)・ds を求めよ    (dsは線素ベクトル、・は内積を表す) という問題を出され、解いたところ次のような答えになりました (1)は dx/dt=λ(-y/x^2+y^2) dy/dt=λ(x/x^2+y^2)として計算、x^2+y^2=1 (単位円ですよね) (2)はdivなので ∂f/∂x + ∂f/∂y = 2xy/(x^2+y^2)^2 - 2xv/(x^2+y^2)=0 (3)は -∫y/(x^2+y^2) dx -∫x/(x^2+y^2) dy     x=acosθ y=asinθ とおいて dx=-asinθdθ dy=acosθdθ          これを代入して計算すると-π/2となりました これらは正しいのでしょうか?

  • あってますか??

    d^2y/dx^2-dy/dx-6y=0,y(0)=1,y`(0)=0のとき、dy/dx=zとおくと、dz/dx=z+6yになる。yを求めよ。っていう問題で、 d/dx=Dっておいて(D^2-D-6)y=0 だから(D-3)(D+2)y=0 よって(D-3)y=0または(D+2)y=0 (D-3)y=0はdy/dx-3y=0でdy/dx=3y だからdy/y=3dx 両辺積分すると、logy=3x+C (Cは積分定数) y=e^(3x+C) M=e^Cとおくと y=Me^3x 同様にy=Ne^(-2x) あわせて、y=Me^3x+Ne^(-2x) y(0)=1,y`(0)=0より M=2/5,N=3/5 よってy=2/5e^3x+3/5e^(-2x) あってますか?? 変なところあったら教えてください>< 問題文の方法使ってないような気がするんですけど だめなんでしょうか?? 連立微分方程式を使うやり方がわかる人は 教えてください!!!

  • 完全形でない3変数関数の微分方程式の解法

    全微分方程式A(x,y,z)dx+B(x,y,z)dy+C(x,y,z)dz=0がある。この式をPとおく。ここで、ベクトル値関数f=[A,B,C]とおき、f・(rotf)=0となるならばPは積分可能でその一般解は下記の手順により求まる。 手順1:Pについてdz=0とすると、Adx+Bdy=0となる。この式をQとおく。これが(∂A/∂y)=(∂B/∂x)を満たすとき、また満たさないときは積分因子μをかけることによりこのQの一般解ξ(x,y,z)=E (Eは定数)が得られる。 手順2:Pの両辺にλをかけたものの一般解を求める。するとλAdx=(∂ξ/∂x)となる。これから、λの値を求める。 手順3:ξの全微分はdξ=(∂ξ/∂x)dx+(∂ξ/∂y)dy+(∂ξ/∂z)dzとなり、このうち(∂ξ/∂x)dx+(∂ξ/∂y)dyはλAdx+λBdyとなるが、最後の(∂ξ/∂z)dzだけはλRdzとなるかは不明である。 dξ=(∂ξ/∂x)dx+(∂ξ/∂y)dy+(∂ξ/∂z)dzと(∂ξ/∂x)dx+(∂ξ/∂y)dy=λAdx+λBdyより、λAdx+λBdy=dξ-(∂ξ/∂z)dzとなる。 するとPの両辺にλをかけた式は、λAdx+λBdy+λCdz=dξ+{λC-(∂ξ/∂z)}dz=0となる。 ここで、λC-(∂ξ/∂z)=ηとおくと、λAdx+λBdy+λCdz=dξ+ηdz=0となり、2変数の全微分方程式dξ+ηdz=0が得られる。この解が結局全微分方程式Pの一般解となる。 ここで質問です。 手順1でdz=0とした式Adx+Bdy=0 (∂A/∂y)=(∂B/∂x)、またはμAdx+μBdy=0 (∂μA/∂y)=(∂μB/∂x)を解くとこの一般解、ξ(x,y,z)=Eが得られ、この関数ξの全微分はdξ=(∂ξ/∂x)dx+(∂ξ/∂y)dy=Adx+Bdy=0、またはdξ=(∂ξ/∂x)dx+(∂ξ/∂y)dy=μAdx+μBdy=0になるのが分かります。 手順2,3でλAdx+λBdy+λCdz=0という式が出てきますが、これはλをかける事により完全形になっていると思われます。しかしなぜλAdx=(∂ξ/∂x)となるのかが分かりません。ξはAdx+Bdy=0の解として現れる関数なので、λAdx+λBdy+λCdz=0を満たす関数は別にあり、例えばこれをσとすると、この関数の全微分はdσ=(∂σ/∂x)dx+(∂σ/∂y)dy+(∂σ/∂z)dz=λAdx+λBdy+λCdz=0となり、λAdx=(∂σ/∂x)dxとなるのではないのでしょうか? それともこの関数σがξと一致すると仮定しているのでしょうか? それからもう1つ気になるのですが、手順3で「最後の(∂ξ/∂z)dzだけはλRdzとなるかは不明である。」とありますが、これもよく意味が分かりません。なぜ(∂ξ/∂z)dzだけλRdzとはなるか分からないのでしょうか? おそらく私が根本的に間違っていると思いますので、詳しい方教えてください。お願いします。

  • 線積分∫(x+iy)dz について

    線積分∫(x+iy)dz について f(z)=u(x,y)+iv(x,y)とすると、 ∫f(z)dz=∫u(x,y)dx-∫v(x,y)dy+i∫u(x,y)dy+i∫v(x,y)dx であるから、 ∫(x+iy)dz=∫xdx-∫ydy+i∫xdy+i∫ydx=1/2x^2-1/2y^2+ixy+ixy=1/2(x^2-y^2)+2ixy・・・(1) 一方、z=x+iyとすると、∫(x+iy)dz=∫zdz=1/2z^2=1/2(x+iy)^2=1/2(x^2-y^2)+ixy・・・(2) となり、(1)と(2)で一致しません。 どこか違っているのでしょうか?アドバイスいただければと思います。

  • 変数分離型の積分?

    ∫∫∫e^(px+qy+rz) dxdydz 積分範囲は 0<=x,y,z<=aという問題なのですが これが(∫e^px dx)(∫e^qy dy)(∫e^rz dz)となるのがよくわかりません。 こういう定理があるのでしょうか?

  • 解き方!!

    d^2/dx^2-dy/dx-6y=0,y(0)=1,y`(0)=0のとき、dy/dx=zとおくと、dz/dx=z+6yになる。yを求めよ。っていう問題で、d/dx=Dっておいて解くやり方はできるんですけど、「dy/dx=zとおくと、dz/dx=z+6yになる。」っていうところを使って解く方法を教えてください!!!