• ベストアンサー

単関数のルベーグ積分でC⊂Dならば∫_Cfdm≦∫_Dfdm?

なかなか定義が明記されてなくて難儀しております。 mは測度のことと思われます。 (単関数の積分) [問]f,gは非負の値を採る単関数,C,D∈Bとする時,次が成立する。 (1) C∩D=φならば∫_(C∪D) fdm=∫_Cfdm+∫_Dfdm (2) C⊂Dならば∫_Cfdm≦∫_Dfdm [(1)の証] ∫_(C∪D) fdm=a・m(C∪D) (a∈R) (∵ルベーグ積分の定義) =a(m(C)+m(D)) (∵測度空間の定義) =a・m(C)+a・m(D) =∫_Cfdm+∫_Dfdm (∵ルベーグ積分の定義) [(2)の証] ∫_Cfdm=a・m(C) (∵ルベーグ積分の定義) ここから ≦a・m(D)が言えません。 どのようにして言えますでしょうか?

質問者が選んだベストアンサー

  • ベストアンサー
回答No.2

No1さんの言う通りですね。 詳しく説明すると D=C∪(D\C)と表すことができ C∩(D\C)=φ よって ∫_{D}f dm=∫_{C∪(D\C)}f dm=∫_{C}f dm+∫_(D\C)f dm ≧∫_{C}f dm てな感じですね。ルベーグ積分のスタートですね。頑張って下さい。

Dominika
質問者

お礼

有難うございます。 簡単なのですね。 お陰様で納得できました。

その他の回答 (1)

  • koko_u_
  • ベストアンサー率18% (459/2509)
回答No.1

D = C ∪ (D\C)

Dominika
質問者

お礼

有難うございます。 簡単なのですね。 お陰様で納得できました。

関連するQ&A

  • あるルベーグ積分の参考書の例題で、

    あるルベーグ積分の参考書の例題で、 例)有界閉集合はルベーグ可測であることを示せ。 解)Kを有界閉集合とするとルベーグ内測度の定義より    Kの外測度≦Kの内測度   がわかります。・・・・・・   ・・・・・・・・・・  というのが、ありましたが、  どの参考書を見ても、外測度より内測度のほうが大きい  という記述はありません。  この式は、ほんとうに正しいのか、どなたか、教えて下さい。  よろしくお願いします。

  • ルベーグ積分の詳しい本

    ルベーグ積分をゼミでやっているのですが (書名がわからないのですが英語の本です。  水田義弘先生の「ルベーグ積分入門」がいちおう訳書らしいです) いままで可測な集合と関数についてやっていて、やっと定義にありついたところで 非負のμ-measurableな関数は、必ずμ-integrableという記述があり 証明しなければいけないのですが、 fの関数の上積分と下積分が等しくなるとき、μ-integrableなので、 上積分≧下積分 と 下積分≦上積分 を示せばいいのですが 下積分≦上積分のほうを示すとき 数学専門の科のゼミではないので自力で証明はしなくていいから 本を探してこい、と言われましたが 大学の図書館に行ってもちんぷんかんぷんでわかりません。 詳しく証明が載っている本をご存知のかた、 教えてください。

  • ルベーグ積分

    大学数学、ルベーグ積分の問題です。 以下の問題の解き方が分かりません。ご回答よろしくお願いします。 (X,B,μ)を測度空間として、AをBを含むX上のσ-加法族とする。このとき、以下の2条 件は同値であることを示せ。 (1)「E∈B,F⊂E,μ(E)=0」⇒「F∈A」 (2)「E_1,E_2∈B,E_1⊂F⊂E_2,μ(E_2\E_1)=0」⇒「F∈A」

  • 今日中に知りたいです!ルベーグ積分について・・・

    今日中に知りたいです!ルベーグ積分について・・・ ルベーグ外測度の定義を以下のようにします。 I:=Π(j=1→n)(aj bj] ただし-∞≦aj<bj≦∞ v(I):=Iのn次元体積 ただしaj=∞又はbj=∞となるjが1つでもあればv(±)=∞とする。 ε:Φと全ての左半開区間からなる集合族 あるE⊂R^nに対して SE:={Ij}j=1→∞、s.t{Ij}j=1→∞⊂ε、∪j=1→∞Ij⊃E このようなSE全体をS*(E)と表し、σ(SE):=Σj=1→∞v(Ij)としたとき |Ee|:=inf{σ(SE)|SE∈S*(E)} これをルベーグ外測度とします。 R上の一点A={1}に対し |A|eを定義に基づいて求めよ。 という問題を解きたいのですが 上のEをAと見なして・・・ そもそも求めるべきものはA={1}を囲むことのできる区間のことでしょうか? それとも答えは点になるのでしょうか? 分かって無くてすみません。だれか問題の答えを教えてください。

  • ルベーグ積分の問題です。至急お願いします!

    お手数だとは思いますが お願いします。 (S,A,μ)を測度空間とする。fを非負可測関数,すなわち任意のx∈Sに対して f(x)≧0で ・∫S(f)dμ=0 (Sは下つきで積分範囲です) を満たすものとする。このときf=0がほとんどいたるところで成り立つことを以下のようにしめせ。 (1)自然数nに対して An={x∈S|f(x)≧1/n}とするとき μ(An)≦n∫S(f)dμ が成立することを示せ。 (2)μ(An)=0であることをしめせ。 (3)μ(∪An)(n≧1)=0が 成り立つことを示せ (4)fはS上ほとんど至る所0であることを示せ。 よろしくお願いします。

  • Lebesgue測度μではμ(S\T)=μ(S)-μ(T)と変形できるの?

    Cantor集合の説明で [0,1]を3等分して(1/3,2/3)を取除くと[0,1/3]と[2/3,1]が残る。次に[0,1/3]と[2/3,1]を3等分して (1/9,2/9),(7/9.8/9)を取除く。 n回目には長さ1/3^nの区間2^(n-1)を取除いた事になるので取除かれた区間全体Gの長さμ(G) (μはLebesgue測度)は Σ[n=1..∞]2^(n-1)/3^n=1 …(1) 従って μ([0,1]\G)=μ([0,1])-μ(G)=(1-0)-1(∵Lebesgue測度の定義と(1))=0 でこの差集合[0,1]\GをCantor集合という。 でμ([0,1]\G)=μ([0,1])-μ(G)となぜ変形出来るのか分かりません。 Lebesbue測度の定義は下記のとおりだと思います。でもどうしても差集合のルベーグ測度が夫々のルベーグ測度の差になる事が導けません。μ([0,1]\G)=μ([0,1])-μ(G)となぜ変形出来るのでしょうか? [定義]Aを全体集合,B⊂2^Aとする。BがA上でσ集合体をなす時,AはBの可測空間をな すと言い,(A,B)と表す。 [定義] (A,B)を可測空間とする。写像f:B→R∪{+∞}は(A,B)上で測度をなす。 ⇔(def) (i) ∀A∈B,f(A)∈{r∈R;0≦r}∪{+∞},f(φ)=0 (ii) ∀m,n∈N\{0} (m≠n), b_m,b_n∈B且つ b_m∩b_n=φ⇒f(∪[k=1..∞]b_k)=Σ[k=1..∞]f(b_k) [定義]f:B→R∪{+∞}を可測空間(A,B)上の外測度をなす。 ⇔(def) (i) f(2^A)⊂[0,∞],特にf(φ)=0 (ii) C⊂D(C,D∈2^A)⇒f(C)≦f(D) (iii) f(∪[n=1..∞]C_n)≦Σ[n=1..∞]f(C_n) (C_n∈2^A (n∈N)) [定義]f:B→R∪{+∞}を可測空間(A,B)上の外測度とする。E(⊂A)は(A,B)上でf-可測 (集合)。 ⇔(def) ∀C∈2^A,f(C)=f(C∩E)+f(C∩E^c) [定義] R^nのm次元区間全{Π[i=1..m](a_i,b_i]\ {∞};a_i,b_i∈R∪{∞}(i=1,2,…,m)} (m≦n)をI(m,n)で表す。 [定義] R^nのm次元区間塊全体{∪[j=1..k]I_i;k∈N\{0},I^m∋I_1,I_2,…,I_k:互い に素}をC(m,n)で表す。 このとき,C(n,n)はR^nで有限加法族をなす。 [定義] 写像g:∪C(n,n)→R^nを C(n,n)∋∀∪[i=1..k]Π[ji=1..n](a_ji,b_ji]→g(∪[i=1..k]Π[ji=1..n](a_ji,b_ji]):= Π(b_i-a_i) (k=1且つΠ[i=1..n](a_j1,b_j1]は有界の時) sup{Π[i=1..n](d_i-c_i);(Π[j1=1..n](a_j1,b_j1]⊃)Π[i=1..n](c_i,d_i]は有界} (k=1でΠ[j1=1..n](a_j1,bj1]は非有界の時) 0 (k=1でΠ[j1=1..n](a_j1,b_j1]=φの時) Σ[i=1..k]g(Π[ji=1..n](a_ji,b_ji]) (k>1で ∪[i=1..k]Π[ji=1..n](a_ji,b_ji]∈C(n,n) (但し ,Π[j1=1..n](a_j1,b_j1],Π[j2=1..n](a_j2,b_j2],…,Π[jn=1..n](a_jn,b_jn]は互 いに素)の時) と定義するとこのgは可測空間(R^n,C(n,n))での有限測度をなす。 そして写像h:2^(R^n)→Rを2^(R^n)∋∀A→h(A):= inf{Σ[k=1..∞]g(E_k);A⊂∪[k=1..∞]E_k (E_k∈C(n,n) (n∈N\{0}))} で定義するとこのhは可測空間(R^n,C(n,n))で外測度をなす。 この時,このhをLebesgue外測度という。 [定義] 写像h:2^(R^n)→R∪{+∞}はルベーグ外測度とする。 L:={E∈2^(R^n);Eは可測空間(R^n,2^(R^n))上でh-可測}をLebesgue可測集合全体の集 合という。 [定義] hをLebesgue外測度とする。制限写像h|Lは測度をなす。 この時,この制限写像h|HをR^n上のLebesgue測度という。

  • ルベーグ解析です。

    (S,А,μ)を測度空間とする。fは非負可測関数で、Sにおいて可積分とする。 (1)An={x∈S|f(x)≧n}に対して、 nμ(An)≦||f||:=∫f dμ が成り立ち、{An}が集合の減少列であることとμ(∩An)=0が成り立つことを示せ。 (2)fはS上ほとんど至る所有限であることを示せ。 よろしくお願いします。

  • 位相空間論やルベーグ積分について

    位相空間論やルベーグ積分を研究している人っているのでしょうか? 残っている問題とかあるのかなあ、と思います。 ルベーグ積分は1年間講義で勉強し、もちろん演習もあったんですけど、本の演習問題がスラスラ解けるか、というとそうではありません。関数解析や微分方程式の本を読む前にもっと理解が必要なんでしょうか? 

  • 再:ルベーグ測度,直積測度の零集合

    X,Yをユークリッド空間R^m,R^nの部分ルベーグ測度空間(X,Yはルベーグ可測集合で測度有限)とします。 φ(x,y)をx∈X,y∈Yを自由変数とする論理式、例えば「f(x,y)=g(x,y)」(f,gは可測関数)とします。 「φ(x,y)  a.e ((x,y)∈X×Y)」  ならば  「「φ(x,y)  a.e (x∈X) 」 a.e (y∈Y)」 は成り立ちますか。また、成り立たない場合はどのような反例がありますか。 但し、X×YはXとYの直積測度空間です。簡単な場合として、m=n=1,X=Y=[0,1]としてもらっても構いません。 全くわからないので、よろしくお願いします。

  • ルベーグ積分の反例を教えてください

    Rは実数体とします。B(R)をボレル集合体。 [Prop] (R,B(R),λ)を1次元ルベーグ測度空間,G∈B(R),λ(G)<+∞,そして可測関数f_nをlim[n→∞]f_n=0とする。 この時,lim[n→∞]∫_G f_ndλ=0. の反例を挙げてください。