• ベストアンサー
  • 困ってます

微分の問題

3次関数f(x)=x^3-ax^2+ax-3aがあり、g(x)=f(x)-xf´(x)とする。ただしaを定数とする。 (1)g(x)を求めよ。 g(x)=-2x^3+ax^2-3a (2)a>0とする。g(x)の極大値、極小値をaを用いて表せ。 極大値(5/27)a^2-3a 極小値-3a (3)a≠0とする。方程式g(x)=0が異なる2つの実数解をもつとき、定数aの値とその時の実数解を求めよ。 (1)(2)はあってますか? また、この問題の(3)を教えてください。

共感・応援の気持ちを伝えよう!

  • 回答数4
  • 閲覧数243
  • ありがとう数0

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.1

(1)はあってると思います。 (2)は、極大値が(1/27)*a^3-3aになりました。たぶん計算ミスです。 (3)は実数解を2つもつとき、ということですので、グラフから考えるのが楽でしょう。 g(x)は3次関数なので3つの解を持ちます。実数解を2つもつということは、そのとき重解とそれと異なる実数解を持つ、ということです。(3次関数のグラフにx軸と平行な横線y=kを入れてみましょう) 上の条件を満たすためには、y=0(x軸)との交点は、いずれかの極値である必要があるとわかります。あとは、(2)の答えを考えてもらえれば解けます。

共感・感謝の気持ちを伝えよう!

質問者からの補足

(3)は場合分け不要で 極値=0を2つとけばいいんでしょうか?

関連するQ&A

  • 3次関数が極値をもつ必要十分条件

    3次関数f(x)が極値をもつ⇔f'(x)=0が異なる2つの実数解をもつ なんですよね? これは、f'(x)=0が実数解α、β(α≠β)をもつとき、f(α)、f(β)は極値となる、ということにはならないんでしょうか? 例えば、 3次関数f(x)=ax^3+bx^2+cx+dがx=0で極大値2をとり、x=2で極小値-6をとるとき、定数a,b,c,dの値を求めよ。 という問題で、 x=0で極大値2をとり、x=2で極小値-6をとる⇒f'(0)=0、f'(2)=0 つまりf'(x)=0が異なる2つの実数解をもつのだから、しかもf(0)=2、f(2)=-6という条件も代入しているのだから、a,b,c,dを求めた後に確認をする必要があるというのが理解できません…

  • 至急 問題解説お願いします

    こんばんは。 タイトル通りですが、以下の問題の解説をお願いします。途中式なども省かず示していただけるとありがたいです。 (1)3次関数 y=2x^3&#8211;3x^2+3ax(aは実数の定数)がx=α、x=βでそれぞれ極大値、極小値をとるとき、次の問に答えよ。  (ア)αの値の範囲を求めよ。  (イ)α+β、αβの値を求めよ。  (ウ)f(x)の極大値と極小値の値の和が0であるとき、aの値を求めよ。 (2)関数f(x)=2x^3+9x^2+6x&#8211;1はx=(   )で極小値(   )をとる。 ちなみに回答は、 (1)  (ア)a<1/2  (イ)α+β=1、αβ=a/2  (ウ)a=1/3 (2)順に、[&#8211;3+√5]/2、[7&#8211;5√5]/2 です。よろしくお願いします!

  • 数III 微分の質問です。

    関数f(X)=2x+(ax/x&#178;+1) が極大値と極小値をそれぞれ2つずつもつような定数aの値の範囲を求めよ。 ・・・という問題なのですが、「f(x)が極大値と極小値を2つずつもつような条件」というのが教科書やチャートにも載っておらず、また先生の解説を聞いても、よく分かりません。どなたか教えて頂けないでしょうか?

その他の回答 (3)

  • 回答No.4
  • take_5
  • ベストアンサー率30% (149/488)

しまった、4つめがあった。。。。。笑 (4) 3つの重解を持つ場合。

共感・感謝の気持ちを伝えよう!

  • 回答No.3
  • take_5
  • ベストアンサー率30% (149/488)

>(3)は場合分け不要で極値=0を2つとけばいいんでしょうか? 3次方程式が解を持つ場合は (1) 相異なる3つの実数解を持つ場合 ‥‥ x軸と相異なる3つの交点を持つ (2) 1つは重解(従って、この場合は解は2個)になり、他の1つはそれと異なる場合 ‥‥ 極大値か極小値のどちらかがx軸で接し、もう1つはx軸とその重解と異なる交点を持つ (3) 実数解は1つで、あとの2つは共役の複素数解の場合 ‥‥ x軸との交点が1つのみの場合 しかない。従って、この場合は(2)に該当する。 a>0より、極小値=-3a<0よりこれは成立しない。よって、 極大値:(1/27)a^3-3a=0より、a>0よりa=±9. 後は、その時の実数解を求めると良い。

共感・感謝の気持ちを伝えよう!

  • 回答No.2

(1) g(x) = -2x^3 + ax^2 - 3a (2), (3) g ' (x) = -6x^2 + 2ax = 0 を解くと -2 x (3x - a) = 0 x = 0, x = a/3 a > 0 のとき g(x) は x = 0 で極小、x = a/3 で極大 a < 0 のとき g(x) は x = 0 で極大、x = a/3 で極小 g(0) = -3a ≠ 0 より、g(x) = 0 が異なる2つの実数解を持つのは、g(a/3) = 0 のとき g(a/3) = a^3/27 - 3a = 0 を解くと a(a^2 - 81) = 0 a≠0 より a = ± 9 で g(x)=0 の重解は x = a/3 = ± 3 a = 9 のとき g(x) = -2x^3 + 9x^2 - 27 = -(x-3)^2 (2x + 3) a = -9 のとき g(x) = -2x^3 - 9x^2 + 27 = -(x+3)^2 (2x - 3) より、 a = ±9 で2つの異なる実数解をもち、解は a = 9 のとき x = -3/2, 3、 a = -9 のとき x = -3, 3/2 x = 0 が g(x) = 0 の解になるときは、実数解が1つだけになってしまうことを確認してください。

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • 微分の問題

    方程式x^3-3ax+a=0が異なる3個の実数解を持つとき、定数aの値の範囲を求めよ。 異なる3個の実数解を持つ為の条件が (1)f(x)が極値をもつ(2)極大値と極小値が異符号 というのはわかるのですが、 (1)の条件としてa>0というのがわかりません。 お教えください。

  • 数学;方程式への応用

    (1)3次方程式x^3-kx+k=0が異なる3つの実数解をもつような、実数kの値の範囲を求めよ。 答えでは、微分して極大値、極小値をもつ時のxの値を求めて、f(√k/3)・f(-√k/3)<0で求めてるんですが、これ以外の回答を詳しくお願いします。 (2)3次方程式x^3-5ax^2+3ax^2+a=0が正の実数解を持つための定数aの範囲を求めよ 詳しくお願いします。

  • 微分の問題なんですが・・・

    kを実数の定数とし、 f(x)=e^(2x)-8e^x+kx とおく (1)f’(x)を求めよ (2)f(x)が極大値と極小値をもつようなkの値を求めよ (3)kが(2)の範囲を動くとき、f(x)の極大値と極小値の 和の最小値とそのときのkの値を求めよ (1)は解けました。(2)は0<k<8ではないかと思います。しかし(3)が解けません。どのようにして解くのか教えてください。お願いします。

  • 酪農学園大学の問題について。

    f(x)=x^3-6ax^2-36a^2x+b について、極大値と極小値の差が27/2のとき、aの値を求めよ。 ・・・・・という問題で、 極大値と極小値の関係は解と係数の関係を利用すればいいと教わったことがあるので、 f(x)=x^3-6ax^2-36a^2x+b f'(x)=3x^2-12ax-36a^2 f'(x)=0 の判別式をDとすると、 D/4=36a^2+108a^2=144a^2 極地をもつから、D>0より 144a^2>0 よって、a<0,0<a  つまり、aキ0 x^3-6ax^2-36a^2x+b=0 の異なる2つの実数解をα、β(α<β)とおくと、 解と係数の関係より、 α+β=4a, αβ=-12a^2 極大値と極小値の差が27/2であるから、 |f(α)-f(β)|=27/2 ・・・・というように解いて、 絶対値をはずそうとしたのですが、 大小関係がよくわからないのでここからどのように答えを導いていくかがよくわかりません。 そこの所を教えてください。よろしくお願いします。 (ちなみに答えは a= 3/8,-3/8 です。)

  • 微分法の問題について

    関数f(x)=x^3+ax^2-9x+bがx=-1で極大値8をとるように、定数a,bの値を定めよ。また、極小値を求めよ。という問題が分かりません。教えてくださいおねがいします。

  • xの3次方程式 x^3 -3ax^2 +3a^3 +3a -2a =

    xの3次方程式 x^3 -3ax^2 +3a^3 +3a -2a = 0 が異なる3つの実数解をもつためのaの値の範囲(ただし、a>0とする)の求める問題について。 f(x)= x^3 -3ax^2 +3a^3 +3a -2a とおき。 f`(x)= 3x^2 -6ax = 3x(-2a) 0<a より 0<2a 以上より、次の増減表を求めました。 x :…| 0 |…| 2a |… f`(x):+| 0 |&#65293;| 0 |+ f(x) :↑|極大|↓|極小|↑ ※↑は斜め右上上がり、↓は斜め右下下がりを示す。 ここまで、求めたのですがこの後どうすればよいのかよく分りません。 解までの手順を分りやすく説明していただけるとありがたいです。 よろしくお願いします。

  • 数学の問題です

    x^3-3a^2x+2=0が異なる3つの実数解を持つためのaの値を求めよ。 という問題で、以下のように考えました。 式を微分して f'(x)=3x^2-3a^2=3(x+a)(x-a) 極大値はx=-a より、 f(-a)=2a^3+2 極小値はx=a より、 f(a)=-2a^3+2 異なる3つの実数解を持つためには、 極大値>0 かつ 極小値<0 極大値 2a^3+2>0 より、a>-1 極小値 -2a^3+2<0より、a>1 以上より、a>1 と考えましたが、これであってるでしょうか?

  • 極値の条件から関数決定

    3次関数f(x)=ax^3+bx^2+cx+dがx=0で極大値2をとり,x=2で極小値-6をとるとき,定数a,b,c,dの値を求めよ。 教えてほしいところ この問題でa,b,c,dの値が求まった後、その値で本当に極値をとるのか見当する必要があるらしいんですが理解できません。 f`(α)=0→f(x)がx=αで極値をとる これがなり立たないのは理解できます。なぜなら,f`(x)=0でD=0の可能性があるからです。 しかし、今回の問題ではf`(x)=0の解は2つあるという条件を組み込んでいるので、D=0の可能性は消えます。 つまり、f`(x)=0の解がα,βで(α>β)→f(x)がx=αで極値をとるということは成り立つはずです。 さらに、どちらが極大で極小をとるという保証もf(0)=-6,f(2)=0で十分なはずです。 よって逆の確認は必要ないのでは??? ご意見ください。

  • 3次関数の微分の問題

    こんにちは。 数研出版「ベーシックスタイル三訂版」の163、164の問題です。 解説が無いので分からず困っています。 [163] 3次関数f(x)=x^3-ax^2が、0<x<1で極値をもたないための実数aに関する条件を求めよ。 [答え] a≦0、3/2≦a [164] 関数f(x)=1/3x^3-a^2x-1(a>0)の極大値と極小値との差が9/16となるaの値を求めよ。 [答え] a=5/3 以上です。 どちらか一方だけでもかまいませんので、分かるかたよろしくお願いします。

  • 実数解の個数

    関数f(x)=x^3-27a^2x+16について f(x)が単調に増加するときのaの値、方程式f(x)=0の異なる実数解の個数、f(x)の極大値と極小値、f(x)=0が異なる実数解を2個もつときのaの値 を求めよ。 という問題なんですが、微分した時点で止まってます。 実数解の個数を求めるには、y=f(x)のグラフとx軸の共有点のx座標を求めればいいと思うのですが、何から始めればいいかわかりません。 順をおって説明していただけませんか?お願いします。