• ベストアンサー

(1)円に内接する三角形の内面積最大となるものを求めよ。

take_5の回答

  • take_5
  • ベストアンサー率30% (149/488)
回答No.4

簡単な方法がある。 sinαは0<α<πにおいては上に凸関数である。 従って sinα+sinβ+sinγ≦3*sin{(α+β+γ)/3}が成立し、等号はsinα=sinβ=sinγ 即ち α=β=γの時、 すなわち△ABCが正三角形のときである。 凸関数については、検索すれば出てくるでしょうから、自分で検索して調べてください。

mabshi
質問者

お礼

丁寧な解答ありがとうございます。 参考にさせて頂き、もう一度問題を解いてみます。

関連するQ&A

  • 円に内接する三角形の面積の最大値を求める(偏微分)

     半径1の円に内接する三角形の面積の最大値を偏微分を利用して求める問題です。  △ABCにおいて、点Aの座標をA(1,0)、点Oの座標をO(0,0)とし、また、∠AOB=α、、∠AOC=β (ただし、0<α<β<2π) とおき、B(cosα , sinα)、C(cosβ , sinβ)としました。  △ABCの面積Sは、(途中の計算は省略させていただきます。以下も同じ)   S={ sinα - sinβ + sin(β-α) } となりました。ここで、Sをα、βで偏微分すると、 dS/dα = sin(β/2)*sin{(β-2α)/2} dS/dβ = sin(α/2)*sin{(2β-α)/2} d(dS/dα)/dα = -sin(β/2)*cos{(β-2α)/2} d(dS/dα)/dβ = {sin(β-α)}/2 d(dS/dβ)/dβ = sin(α/2)*cos{(2β-α)/2} となり、 dS/dα = 0 dS/dβ = 0 を満たすα、βを求めると、     α = (2/3)π 、β = (4/3)π となりました。 さらに、α = (2/3)π 、β = (4/3)π の時、 d(dS/dα)/dα = -(√3)/2 d(dS/dα)/dβ = (√3)/4 d(dS/dβ)/dβ = -(√3)/2 より、     { d(dS/dα)/dβ }^2-{ d(dS/dα)/dα }*{ d(dS/dβ)/dβ } = -9/16 < 0 であるから、     Sはα = (2/3)π 、β = (4/3)π の時に極大値となり、S = 3(√3)/4 ここで、Sがα = (2/3)π 、β = (4/3)π の時に極大値 3(√3)/4をとるが、最大値となるか確かめるために、  『α = (2/3)π とした時のβに対するSの増減及びβ = (4/3)π とした時のαに対するSの増減を考える』 ために、増減表を作成し求めていきました。 しかしながら、 『「α = (2/3)π とした時のβに対するSの増減及びβ = (4/3)π とした時のαに対するSの増減を考える」ことで、なぜ極大値が最大値と分かるのか根拠を述べよ』 とご指摘いただき、これに対してどのように答えれば良いのか分からず、困っておるところです。 どなたかアドバイスいただければと思います。よろしくお願い致します。

  • 円に内接している四角形の面積の最大について

    ↓の質問を前回させてもらったのですが、理解出来ないところがありました http://okwave.jp/qa/q7366362.html 質問の点については、 具体的な 120゜や 60゜の値に結びつけて考える必要は無いです。 △ABC が固定され、D は △ABC の外接円周上にあるので、 △DAC の面積が最大になるのは、D の AC に対する高さが最大になるとき、 つまり、DA=DC の二等辺三角形のときです。 二等辺三角形の頂角から底辺におろした垂線の足は、底辺の中点ですね。 ほら、「条件は垂直二分線」だったでしょう? という回答を頂いたのですが下がいまいち理解できません 「△DAC の面積が最大になるのは、D の AC に対する高さが最大になるとき、 つまり、DA=DC の二等辺三角形のときです。」 なぜACの高さが最大になることと、DA=DCになることがつながるのですか?

  • 3辺の長さがわかる場合の三角形の面積

    四面体OABCがあり、∠AOB=∠BOC=∠COA=90°、OA=a、OB=b、OC=cとする。 (1)三角形ABCの面積をSとする。Sをa,b,cを用いて表せ (2)a^2+b^2+c^2=1のときSの最大値を求めよ 三平方の定理より、AB=√(a^2+b^2)、BC=√(b^2+c^2)、CA=√(c^2+a^2) とわかるのでそこから「ヘロンの公式」を利用して面積を求めようと思ったのですが、いくら計算しても複雑でなかなかまとまりません 簡単にSを求める方法はあるでしょうか? 回答いただければ幸いです。よろしくお願いいたします

  • 平面図形

    原点Oを中心とする半径1の円周上に3店A,B,Cがあり、 ∠AOB=θ、∠BOC=π/2とする。 A(1,0)Bが2限象、Cが3限象にあるものとする。 (1)直線BCの方程式はax+by+c=0の形で、 sinθ,cosθ,x,yで表すと? (2)Aから直線BCにおろした垂線の長さdをθで表し、 △ABCの面積Sをθで表せ。 (3)Sの最大値は? 解ける方がいらっしゃいましたら 解説お願いします。

  • 三角錐の体積

    三角錐O-ABCと底面ABC上の点Xは、OA=2,OB=3,OC=4 ∠AOB=∠BOC=∠COA,∠AOX=∠BOX=∠COX=30°を満たす。 このとき、三角錐O-ABCの体積を求めよ。 普通は、三角錐の体積は、1/3×底面積×高さで求めるところだと 思うが、この場合は違うように思った。三角錐を3つに分割して考えるのでないかと 思ったが、2つの角度の条件をどう使うのか、分からなかった。 OX=kとして、余弦定理をもちいて、AX^2=2^2+k^2-2*2*k*cos30° などとしてみても体積につなげることができず。 ∠AOB=∠BOC=∠COA=θして、余弦定理をもちいて、AB^2=2^2+3^2-2*2*3*cosθ としてみても、これまた他の条件とどう関連づければよいかわからず。 よろしく、アドバイスをお願いします。

  • 2等辺三角形に内接する円の面積と底辺

    AB=AC=1である2等辺三角形ABCに内接する円の面積を最大にする底辺の長さの求め方で、自分の解き方の間違いがわからないので質問します。 内接円の半径をr、底辺の長さをx(x>0)として、∠B=∠C=θ(0<θ<π/2)とおくと、3角形ABCの面積は2通りにあらわせ、△ABC=(1/2)*(1+1+x)*r,△ABC=(1/2)*1*x*sinθ この2つからr=(x*sinθ)/(x+2) 内接円の面積は、π*r^2からr^2が最大のとき最大となる。f(x)=r^2={(x*sinθ)/(x+2)}^2 と置いて、f'(x)=sin^2θ*(4x/(x+2)^3)となり、0<θ<π/2からsin^2θ>0より、 4x/(x+2)^3=0を解こうとしてもx>0から4x/(x+2)^3>0となり、f'(x)=0となるxは求められません。 sinθを使ったのが計算間違いの理由かと思うのですが、定数として扱ってはいけない 理由がわかりません。どなたか間違いを指摘してください。 解説では、内接円の半径をr。底辺の長さを2xとして、3角形の3辺の条件から |1-1|<2*x<1+1から0<x<1、 3角形ABCの面積の1つめは、(1/2)*√(1-x^2)*2xとし、2つめは(1/2)*(1+1+2x)*r,、2つからr={x*√(1-x^2)}/(1+x)を導き、 f(x)=r^2=(x^2-x^3)/(1+x)、f'(x)=-{2x*(x^2+x-1)}/(1+x)^2 、f'(x)=0となるxは0<x<1から x=(√5-1)/2 あとは増減表を書いて、x=(√5-1)/2のとき面積は最大となる。 底辺のながさは2x=√5-1でした。

  • 円に内接する三角形の面積が最大のときの三角形の形の証明

    【問題】 平面上の点Oを中心とし半径1の円周上に相異なる3点A、B、Cがある。 三角形ABCの内接円の半径rは1/2以下であることを示せ。 rが最大のときは円の面積が最大。そのときの三角形ABCは正三角形だと 予想できるのですが、証明の仕方がわかりません。 わかる方教えてください。お願いします。

  • 四面体の面積

    四面体OABCについて、OA=BC=a,OB=CA=b,OC=AB=cとする。 △AOB,△BOC,△COAの内心(内接円の中心)をそれぞれD,E,Fとする。 このとき、四面体OABC,四面体ODEFの体積をそれぞれV,V'とする。 a=(b+c)/3をみたしながら四面体OABCをいろいろつくるとき、V'/Vの最大値を求めよ。 とりあえずV'/Vをbcだけで表そうと思ったのですが、どうすればいいのかわかりません。 どなたか解答をよろしくお願いします。

  • 二等辺三角形の面積が最大化されるときの角度について

    二等辺三角形の面積が最大化されるときの角度を求める問題についての質問です。 以下(1)~(5)のように考えると底辺が45度の時に最大化されるようですが何か大きな勘違いしているようですのでアドバイスいただけると助かります。 三角形ABCとしてAB=AC=x、角ABC=ACB=y(0=<y=<90度)の二等辺三角形を考え、xを固定してyが動くときこの面積の最大化を考えたいのですがこの際に、 (1)BCの中点Mをとり三角形ABMの面積の最大化を求めてもよいように思います。 ABMの面積Sを最大になるときのyの条件を考えると、 (2)ABMは直角三角形ですからAM=x*siny、BM=x*cosyより、S=1/2*x^2*siny*cosy  (3)x>0より結局 sinyx*cosy の最大化を求めればよく、 (4)sinyx*cosy=1/2*sin2yより0=<y=<90度ではsin2y=1となるときが最大、 (5)つまり2y=90度、y=45度のときにSが最大となり、この際に三角形ABCも最大化になるような気がします。

  • ベクトルの問題です。教えてください!

    四面体OABCがあり、OA=OB=OC=5、∠AOB=∠BOC=∠COA=90°である。 辺ABを2:1に内分する点をD、辺OCの中点をE、線分DEの中点をFとする。 また、OA=a、OB=b、OC=c(ベクトルは省略させてください。)とする。 また直線AFと三角形OBCとの交点をPとするとき三角形OAPの面積を求めよ。 OPをベクトルで表すまではできたと思うのですが、 三角形の面積をどうやって求めればいいのかが分かりません。 詳しい解き方を教えてください!