• 締切済み
  • すぐに回答を!

数IIの問題です!

【問】y=x^2と直線x=aの交点をPとする。点PにおけるCの接線をMとする。 直線Mに関し、点Q(a、-1)と対称な点をRとする。点Pと点Rを通る直線の方程式を求めよ。(aは定数) *「x^2」はxの二乗の意味です。 直線Mはy=2ax-a^2と出ました。 あとは、点Rがこの直線を通るという条件を使うんでしょうか…? 解き方と、答えを分かる方教えてください。 よろしくお願いします!!

共感・応援の気持ちを伝えよう!

みんなの回答

  • 回答No.2
  • take_5
  • ベストアンサー率30% (149/488)

>直線Mはy=2ax-a^2と出ました。あとは、点Rがこの直線を通るという条件を使うんでしょうか…? 素直に考えれば、直線M:y=2ax-a^2に関する点Q(a、-1)と対称な点をRを求め、その点Rと点Pの2点を通る直線を求めるだけ。 R(α、β)とすれば、直線:RQは直線Mと直角で交わり、and、2点R、Qの中点が直線M上にあることより、点R(α、β)の座標は求まるでしょう。 そして、その点Rと点Pの2点を通る直線を求めるだけ。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

回答ありがとうございます! そのやり方で一度やってみたいと思います。

  • 回答No.1
  • pixis
  • ベストアンサー率42% (419/988)

あのー・・・ Cの接線て書いてありますがCってなんですか?

共感・感謝の気持ちを伝えよう!

質問者からのお礼

すみません! 書き忘れました!! C:y=x^2です。

関連するQ&A

  • 数学の問題がわかりません。

    数学の問題がわかりません。 aを正の定数とする。2つの放物線C1:y=x^2 と C2:y=(x-2)^2+4a の交点をPとする。 (1)放物線C1上の点Q(t,t^2)における接線の方程式を求めよ。更に、その接線のうちC2に接するものをLとする。Lの方程式を求めよ。 (2)点Pを通りy軸に平行な直線をmとする。Lとmの交点をRとするとき、線分PRの長さを求めよ。 (3)直線L,mと放物線C1 で囲まれた図形の面積を求めよ。 わかりません。。 お願いします!!

  • 数学の問題ですお願いします

    数学のわからないところがあるので教えてください 円X2乗+y2乗=25について次の接線の方程式を求めてください。 (1)円上の(4、ー3)における接線 (2)点(10、5)を通る接線 もう一つ! 円 x二乗+y2乗ー2x-4y-3=0と直線x+2y=5の2つの交点と点A(3、2)を通る円の方程式を求めてください。 よろしくお願いします 途中式もお願いします

  • 高校数学II教えてください

    (1)座標平面上に直線 l:Y=3X がある。直線lに関して点(0, 3)と対称な点の座標を求めよ。また、直線lに関してY軸と対称な直線の方程式を求めよ (2)円 (Xの二乗)+(Yの二乗)=9 と点(2、1)に関して対称な円の方程式を求め、更に、この2つの円の交点の間の距離を求めよ。 わかるかた解答教えてください!

  • 数IIの問題なのですが・・・。

    原点をOとする座標平面状に円CとCの接線l(える)が次のように与えられている。 C:x(2乗)-2x+y(2乗)=0  l:y=-x+k ただし、定数kは正の実数である。このとき、次の問いに答えよ。 (1)円Cの中心の座標と半径を求めよ。 (2)定数kの値を求めよ。 (3)円Cと接線lの接点Pの座標を求めよ。 (4)接線lとx軸との交点Qの座標を求めよ。 (5)接線lとy軸との交点Rの座標を求めよ。 全然わかりません; (1)は偶然できたんですが・・・ (2)からはさっぱりで・・・;; どなたか教えてください><。 よろしくお願いします。

  • 数IIの図形と方程式の問題ですが、分かりません;;

    図形と方程式の問題なんですが、解き方がよく分かりません; 分かる方いらっしゃったらおねがいします>< aを定数とし、2直線 r:y=2x、m:y=3分の1x と、点(2、-1)を通り、 傾きがaの直線nがある。 (1)直線nの方程式は、y=ax-(ア)a-(イ)であり、3直線r、m、nで三角形ができない のは、a=(ウエ)/(オ) 、 (カ)/(キ) 、(ク)のときである。      分数が上手く書けなくてすいません。3行目と6行目の3分の1と /で表しているのは 全部分数です。(ア)~(ク)に入る答えをできれば早めにお願いします。      

  • 数IIの質問

    質問あります。 ●1つ目。 円x^2+y^2=5の接線が次の条件を満たすとき、その接線の方程式を求めよ。 (問1)直線x+2y=1に平行 ってのがあります。 解答冊子を見ると、接点の座標(p,q)として、 p^2+q^2=5・・・(1) px+qy=5・・・(2) の2式を立てて「q≠0」「q=0」の2通りに分けて答えを導いてます。 確かにq=0の時は平行にならず条件を満たさないから場合わけした意味あると思います。 でもpに関しても「p=0」と「p≠0」の場合に分ける必要があるんでないんですか?pも「p=0」のとき平行にならない気がするんですが。 ●2つ目の質問 直線x+3y=0・・・(1) に関して、直線2x-y=0・・・(2)と対称な直線の方程式を求めよ ってあります。解答冊子は、直線(2)上の点Q(a,b)と直線(1)に関して対称な点をP(x,y)として、 線分PQの中点が直線1上にあるからa+3b=-x-3y・・・(3) という式を導き出して、 直線PQが直線(1)に垂直だから3a-b=3x-y・・・(4) という式を導き出して、 (3)、(4)より a=(4x-3y)/5 b=(-3x-4y)/5 で、 点Q(a,b)が直線(2)上の点であるから 11x-2y=0 が導かれ、これが答えとなってます。 別に代入していったり・・って部分では「なるほど・・なるほど・・」っとなって、躓いてないんですが、 なんで11x-2y=0が設問である対称な直線の方程式の答えになってるのかが分かりません・・。

  • 関数の問題です。教えてください。

    aはa≧0を満たす定数であるとし、f(x)=-x^3/2+ax^2とする。 曲線C;y=f(x)とする。C上の点P(t、f(t))におけるCの接線lの方程式を求めよ。 また、lと直線x=1の交点を(1、g(t))とするとき、g(t)をt、aを用いて表せ。 そしてtが0≦t≦1の範囲を動くとき、(2)のg(t)の最大値M(a)をaを用いて表せ。 考え方と解き方が分かりません。 詳しく教えてもらえると嬉しいです!

  • 大至急 数II問題の解き方を教えてください

    aは0でない実数とし関数f(x)を f(x)=ax^3-3(a^21)x^2+12ax とする f(x)の導関数f ’(x)は 【ア】{ax^2-【イ】(a^2+1)x+【ウ】a}であるからf(x)が局地を持たないaの値は 【ヱ】または【オカ】である ここでa=【ヱ】のときの曲線をy=f(x)をCとする C条の点O(0、0)におけるCの接線lの傾きは【キク】である lと平行な直線のうち点O以外の点PでCと接する直線をmと考える Cとmの接線Pの座標は(【ケ】、【コサ】)であり、直線mの方程式は y=【キク】x-【シス】である さらにCとmとの共有点のうちPでない方をQとすると点Qの座標は(【セソ】、【タチツ】)である ア~ツまでの入る数字をお願いします .

  • 軌跡の問題について

    軌跡の問題で困っているものがあります。 放物線y=x^2/4上の点Q、Rは、それぞれその点におけるこの放物線の接線が直交するように動くものとする。 この2本の接線の交点をP、線分QRの中点をMとしたとき、次の問いに答えよ。 (1)点pの軌跡の方程式 (2)点Mの軌跡の方程式 点QとRをそれぞれ(a,a^2/4)と(b,b^2/4)として接線をだして求めて行くようですが、良く分かりません。 答えは(1)y=-1 (2)y=x^2/2+1です。 解法が分かる方、解説お願いします。

  • 数学の問題の解答を教えてください。

    放物線 y=x²上の2つの点A(α,α²)、B(-α,α²) における接線の方程式をそれぞれl,mとする。ただし、α>0とする。   (1)点Aにおける接線lの方程式を求めよ。   (2)2つの接線l、mの交点Pの座標を求めよ。   (3)α=1のとき、放物線と直線ABで囲まれる部分の面積Sを求めよ。   (4)放物線と2つの接線で囲まれる部分の面積が18となるときのαの値を求めよ。