ベストアンサー ベクトル 2008/02/02 10:38 内積の一般の定義(絶対値が出てくるもの)と成分における定義を結ぶのは余弦定理らしいですが、具体的にどのようになっているのか教えてください。 お願いします。 みんなの回答 (2) 専門家の回答 質問者が選んだベストアンサー ベストアンサー kabaokaba ベストアンサー率51% (724/1416) 2008/02/02 11:45 回答No.2 そうですね,自分で計算するのがよいでしょう <a,b>=|a| |b| cosθ でcosθを成分で表わせばよいのです. 結構感動しますよ. 内積にcosθを採用した最初の人を尊敬しちゃいます. #多分正射影が念頭にあったんだろけど. 通報する ありがとう 0 広告を見て他の回答を表示する(1) その他の回答 (1) koko_u_ ベストアンサー率18% (459/2509) 2008/02/02 11:22 回答No.1 >具体的にどのようになっているのか教えてください。 自分で計算するから理解が深まるのですよ。 通報する ありがとう 0 カテゴリ 学問・教育数学・算数 関連するQ&A ベクトルの外積 ベクトルの内積の定義は,二つのベクトルの大きさとそのなす角の余弦の積として定義されます.この定義は,例えば,仕事を定義する場合,あるいは,ガウスの定理のような曲面とその法線に対するベクトルの積の例などを使って,容易にその定義の妥当性が検証できます. 一方,ベクトルの外積の場合は,二つのベクトルの大きさとそのなす角の正弦の積として,しかも,その方向は二つのベクトルに対して直角と定義されます.この定義は,電磁気学には,フレーミングの法則などがありますが,力学でこの法則の妥当性を検証するような事実は,何があるのでしょうか. 余弦定理と内積 余弦定理の一般的な公式は a^2=b^2+c^2-2bc・cosθ と表されますが、なぜピタゴラスの定理(直角三角形)に -2bc・cosθ を加える必要があるのでしょうか? また、 bc・cosθ だけみるとこれは <内積>:|a||b|cosθ とも見て取れる気がします。(あくまで僕個人の意見なんですが) もしかして余弦定理と内積の公式というのは関係性があるんでしょうか? そもそも内積の存在意義自体、僕は理解できていません。 僕は文系で物理のスカラーというものを知らないのでそういう人でも分かるような説明があるならば非常にありがたいです。 ベクトル この問題は余弦定理を使って解くことが出来ますか? ベクトルの問題 お世話になります。ベクトルの問題が解けないので、教えてください。 △OABにおいて、OA=2、OB=3、AB=4である。点Oから辺ABに下ろした垂線の足をHとする。→OA=→a,→OB=→b、とおくとき、 (1)内積→a*→bを求めよ。 (2)→OHを→a,→bを用いて表せ。 わかる範囲で自分の解答を載せると、 (1)は余弦定理よりcos∠AOB=(9+4-16)/2*3*2=-1/4 よって→a*→b=2*3*(-1/4)=-3/2 これ以外に何か解答はありますでしょうか。 (2)は→OH⊥→ABなので、内積0を使うと思うのですが、→OHをどう表すかわかりません。 0ベクトルの記述 ベクトルにおいて、平行条件や内積などの定理は0ベクトルを除くものが多いですが、参考書を見てみると 「0ベクトルではないので」 の前置きがある解答とない解答があります。僕自身は辺にベクトルを与えたり、成分が既に分かっているベクトルなど、0でない事が明らかに保証されているものだから省略しているのかと思いましたが、そうでないものも省略されていたり、逆に0でないのは自明なのに述べている場合もあっていよいよ分かりません。紙面上の都合でしょうか。 ベクトルの内積の記号 2つのベクトルの内積の標記の仕方で, 成分での標記が教科書に載っていませんが, (1,2)・(2,3)=2+6=8 というように成分表示された2つのベクトルの内積を このようにかいてもいいのでしょうか? 1回だけ問題集で見たことがあります よろしくお願いします ベクトルの内積って何? 角A=90度 AB=5 AC=4 の三角形において次の内積をもとめよ。 というばあいベクトルBA・BC=絶対値のベクトルlBAl・lBClcosαという感じになりますよね。 けど、別の問題では、次のベクトルa,bの内積と、sのなす角θ(0度≦θ≦180度)を求めよ。 ベクトルa=(-1,1) b=(√3 - 1,√3 +1) という問題では内積は、ベクトルa・b=2 となっています。 コサインはいらないのでしょうか・・・? 成分表示をされてるときはいらないのかな・・・とおもいました。 高3なのですが・・・。あまり深い知識はいらないのですが、この2つの何が違うのか?考え方を教えていただけたらと思います。お願いします。 ベクトルの内積(余弦定理、鏡映)の問題を教えて下さ Rⁿの内積に関する問題(余弦定理、鏡映)を教えて下さい。 この問題が分からず困っています 問題: 次の、Rⁿの内積に関する問題を解きなさい。 ただし、原点をOとして、点Xに対するベクトルOX をxと表わしている。 (1)-|a||b|≦a・b≦|a||b|より、cosθ=(a・b)/(|a||b|)でθ∊[0,π)を定義すると、θは幾何的なaとbのなす角と一致する事は既知として、△OABの∠AOB=θに関する余弦公式を示せ。 (ベクトルABをaとbを用いて書くとよい) (2)点Aを通り、法線ベクトルnを持つ超平面Πに関する鏡映Sπ:Rⁿ→Rⁿは Sπ(x)=x-{2(x・nーa・n)/(n・n)}・n で与えられる。鏡映は等距離変換であること、つまり|Sπ(x)-Sπ(y)|=|x-y|を示しなさい という問題です。 分かる方、教えて下さい。お願いいたします 列ベクトル、行ベクトル、ベクトルの成分表示の違い この3つに使い方の違いはあるのでしょうか? 例えば、成分を求める問題で列ベクトルにしてから計算して成分表示したり、内積するときに成分表示で示されたベクトルを勝手に列ベクトルと行ベクトルに変えて計算してもよいのでしょうか? ベクトル場の積分 ベクトル場の積分は線積分、面積分、体積分のいずれも積分値はスカラーとなるものばかりです。 ストークスの定理も、ガウスの発散定理も全て積分値はスカラーです。 これらの積分では積分の中が内積になっているので当たり前ですね。 では質問ですが積分値がベクトルになるベクトル場の積分にはどんなものがありますか。 零ベクトルでないベクトルa(a1,a2)の意味は? (1)零ベクトルでないベクトルa(a1,a2)の意味はどういう意味でしょうか? つまり、a1がx成分。a2がy成分ということでしょうか? (2)ベクトルの内積a,bはなぜ実数値なのでしょうか? わかりやすく教えてください。 ベクトル:ΔABCの外心Oを・・・ 授業の問題演習で先生が出題したのですが、先生が問題の出典を忘れてしまい、授業中にみんなで解いたのですが、誰も答えまでたどりつけませんでした。(先生もです…。) 自分でもう1回解いてみたんですが、やっぱり答えまでたどりつけません。 どうか考え方を教えてください。 ------------------------ 問. 三角形ABCの3辺の長さは、AB=6,BC=2√13,CA=8である。 ベクトルAB=ベクトルb,ベクトルAC=ベクトルc とおくとき、内積 ベクトルb・ベクトルc の値を求めよ。 また、三角形ABCの外心Oとして、ベクトルAOをベクトルb,ベクトルcを使って表せ。 ------------------------ 【途中までの解】 内積は24とでました。(余弦定理から∠A=60°。内積の公式から6×8×1/2=24) ここからがわかりません。 とりあえず外接円の半径Rを正弦定理から求め、 R=2√39/3 という値が出ました(←この値はあっていますか?) つまり、|ベクトルAO|=|ベクトルBO|=|ベクトルCO|=R ということになりますよね? ここからいろいろなやり方を試行錯誤しているのですが、どれも答えまではたどりつけません。 最初に思いついたのは、 ベクトルAO=ベクトルAB+ベクトルBO また、ベクトルAO=ベクトルAC+ベクトルCO のようにベクトルAOをいろいろなベクトルで表現して最後に係数比較するやりかたでした・・・・。 なにか別の方法はありますか?それともこのまま工夫すれば答えまで行けるのでしょうか?? よろしくお願いします。 不等式の証明(ベクトル |→a + →b|≦|→a| + |→b| 内積の定義と性質のみを使ってを証明してください ベクトルの問題です とある大学の過去問をやっているのですが、一問だけいまいち解らない部分があります、 (問題)空間内の4点O,A,B,Cに対して→OA=→a,→OB=→b,→OC=→cとおく。 |→a|=2,|→b|=3,|→c|=4,→a・→b=2,→b・→c=11,→c・→a=4をみたしているとする。 (1)|→AB|=(ア) |→AC|=(イ√ウ) ∠BAC=(エ/オ)πである … この、∠BACを求める問題なのですが、いまいちやり方がわかりません。 最初、内積を利用して(→a・→b=|→a||→b|cosθ)解く問題だと思ったのですが、→AB・→ACの値が出てこず、挫折してしまいました。 最終的には、CBの長さを調べてから余弦定理を使って解いたのですが、 この問題以降もベクトルの性質を利用した問題が続いていて、この問題だけベクトルを使わない解き方をするとは思えません。 正しい答え方はどのような解き方をするのでしょうか。やはりベクトルを使って解く問題なのでしょうか。教えてください ちなみに、ア=3,イ=2,ウ=3です 行列の要素にベクトルの成分をいれる? ベクトルの成分を行列にするというのは習いました。 では、ベクトルを並べて 例えば 2次元のベクトルA,BとベクトルC,Dがあり、それぞれを並べて ( (2,1) , (3.5) ) と ( (2,4), (1.6) ) というようにして、A,Cの内積、B,Dの内積が入った行列を導出するようなことはできますか? (A,B)・(C,D) = (A・C , B・D) 仮にベクトルの成分行列を要素に持つ行列があると仮定して、(C,D)行列を転置すれば行列の 掛け算はできますが、内積を行うようなこうはできるのでしょうか。 三角比の有理化について教えて下さい。 sin45°とcos45°を正弦定理や余弦定理などの公式に代入するとき、数表を使わないで答えを求める場合、 √2分の1とするのか、2分の√2とするのかどちらが 一般的なのか教えて下さい。 よろしくお願いします。 正弦定理と余弦定理について 正弦定理から余弦定理は導けるのですが、余弦定理から直接に正弦定理を出す導き方を教えてください。(参考書など調べてみましたが出ていませんでした) ヘロンの公式は余弦定理から導かれますか 余弦定理はピタゴラスの定理を使って証明されるものと聞きましたが、ヘロンの公式は余弦定理を使って証明できるものでしょうか。 法線ベクトルの問題 この問題について教えてください。 「次の2直線のなす角aを求めよ。ただし、0≦θ≦90°とする」 x+√3y-1=0・・・(1) x-√3y+4=0・・・(2) 答えは二つの式の法線ベクトルをだして内積を使って角度を求めるらしいのですが、二つの式自体のベクトルを使ってできませんか? 自分でやってみました。 (1)のベクトルは成分であらわすと(√3,-1) (2)のベクトルは成分であらわすと(√3,1) これより 内積は-2| cosθ=-1/2 θ=120° ただし、0°≦θ≦90°より a=60° 答え自体は一緒です。ただ解答は法線ベクトルを用いています。このような種類の問題で法線ベクトルを使う必要がありますか?ご回答よろしくお願いします。 ベクトルの問題です 四面体OABCにおいて、OA=OB=OC=3、AB=BC=CA=√6である。 また、点Pは辺ABをx:1-xに内分し、点Qは辺OCをy:1-yに内分する。(0<x<1、0<y<1) OAベクトル=aベクトル、OBベクトル=bベクトル、OCベクトル=cベクトルとして次の問いに答えよ。 (1)内積a・bベクトルを求めよ (2)PQベクトルをaベクトル、bベクトル、cベクトル、x、yで表せ (3)2点P、Q間の距離PQの最小値と、そのときのx、yの値を求めよ (1)は、余弦定理を使ってcos∠AOBが2/3からa・bベクトルが6とだすことが出来ました。 (2)から分かりません。 出来れば詳しい解説をよろしくお願いします。