• ベストアンサー
  • 困ってます

三角関数の問題

半径2の円Oと、円Oのそとに中心を もつ半径√2の円O´が二点A、Bで交わり、 ∠AOB=π/3、∠AO´B=π/2である。 二つの円に共通な部分の面積Sを求めよという問題なんですが、 S=扇形のOAB+扇形のO´AB-△OAB-△O´ABですよね? しかし扇形の面積は分かるのですが 私には△OABとO´ABのもとめかたがわかりません>< どなたか教えてください;;

共感・応援の気持ちを伝えよう!

  • 回答数1
  • 閲覧数88
  • ありがとう数0

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.1
  • info22
  • ベストアンサー率55% (2225/4034)

△形の面積S=(1/2)(底辺)*(高さ)=(1/2)(半径)*(半径*sinθ)です。 △OAB=(1/2)(R^2)sin(π/3)=(1/2)2*2sin(π/3) △O'AB=(1/2)(r^2)sin(π/2)=(1/2)√2*√2 sin(π/2) で計算できます。 基礎力をつけて下さい。

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • 三角関数の問題

    (前にもこの質問をしましたが)二つの円、O,O’があり、Oの半径は(2√2)で、O’の半径は2です。OとO’は交わっています。(2点で)その交点をA,Bとします。そのA,BとO,O’を結びます。それで、二つの円が交わった部分の面積をもとめたいのです。 角AOB=π/3 , 角AO’B=π/2 が分かります。 扇形-三角形+扇形-三角形=円が交わった部分の面積 と考えているのですが、答えである、7π/3-(2√3)-2 になりませーん!! おしえてください。

  • 高校範囲での三角関数に関する不等式の証明について。

    sinθ<θ<tanθ (0<θ<π/2)…(*)という不等式がありますが、この証明で悩んでいます。自分は次のような証明を習いました。 中心角がθ、半径rの扇形OABを描く。(θ=∠AOB) 線分OAに垂直な直線を考え、OBを延長した線と交わる部分をCとする。(このときACは扇形を円と考えたときの接線。) 三角形OABの面積は、(1/2)*(r^2)*sinθ 扇形の面積は、(1/2)*(r^2)*θ 三角形OACの面積は、(1/2)*(r^2)*tanθ であり、これらの大小関係は明らかに、 (1/2)*(r^2)*sinθ < (1/2)*(r^2)*θ < (1/2)*(r^2)*tanθ であるから、各辺に(1/2)*(r^2)の逆数をかければ、(*)が成り立つ。 というものです。 しかし、この中には、円(扇形)の面積、つまり積分が入っています。しかし、三角関数の積分を考えるとき、どうしてもsinθ / θ→1(θ→0)を使わなくてはならないと思います。 これを証明するには、(*)の各辺をsinθで割り、逆数を取ることを利用しなくてはなりません。 やはり、(*)の証明を変えなくては循環してしまうと思うのですが、なにか上手い手はないでしょうか。よろしくお願いします。

  • 三角関数の質問です。

    aを1以上の定数とする。点Oを原点とする座標平面上において、中心がOで、半径が3の円をCとする。θ≧0を満たす実数θに対してC上の点P,Qを P(3cosaθ,3sinaθ) Q(3cos(θ/3+π/2),3sin(θ/3+π/2))とする。 PとQのy座標が等しくなるような最小のθの値を求めよ。 また、0≦θ≦(上の答え)の範囲を動く時、円Cにおいて点Qの軌跡を弧とする扇形の面積を求めよ。 どなたか解答お願いします(ू ˃̣̣̣̣̣̣o˂̣̣̣̣̣̣ ू)

  • 三角関数について。

    三角関数の問題について、わかりません> 問題 周の長さが12cmの扇形のうち、その面積が最大になる場合の、半径、中心角、面積を求めよ。

  • 高校1年数学問題です

    半径1000mmの円があります。 中心をOとして円の周辺に2点A,Bをとります その時ABは1直線上または、重なりません。、∠AOB<180 (Oから直線ABに垂直におろした直線とその直線ABの交わる点をD、弧ABと交わる点をEとして、  直線DEをdとします。) d=40.5mm r=1000mm ∠AOBをθ 中心Oと弧ABで囲まれた図形OAB から △OAB を引いた部分の面積をもとめたいのです。 よろしくお願いします

  • 数学の問題 三角関数

    自分でも考えてみたのですが、 どうしても分からないので教えてくだされば嬉しいです^^: 点Oを中心とする半径rの円周上に、二点A,Bを∠AOB<π/2となるようにとり、θ=∠AOBとおく。 この円周上に点Cを、線分OCが線分ABと交わるようにとり、線分AB上に点Dをとる。また、点Pは線分OA上を、点Qは線分OB上を、それぞれ動くとする。 (1)CP+PQ+QCの最小値をrとθで表せ (2)a=ODとおく。DP+PQ+QDの最小値をaとθで表せ (3)さらに、点Dが線分AB上を動くときのDP+PQ+QDの最小値をrとθで表せ 余弦定理で解けるかと思ったら、まったく解けませんでした・・・ もういっそすがすがしいほど分かりません。 方針すらも立てられません(涙 どなたか数学の得意な方、よろしくお願い致しますm(u u)m

  • 扇形と円の重なった面積

    半径R、Θが0からπ/2の扇形と、半径r0の円の中心がΘ=π/4軸上を移動するとき、 扇形と円の重なったところの面積を求める式がわかりません。 半径r0の円の大きさは扇形に内接する大きさです。 図では実践と点線の円の大きさは異なりますが同じ半径r0の円です。 半径r0の中心は扇形と重なりがなくなるところまで動きます。 扇形の原点から半径r0の円の中心まではrです。 よろしくお願いします。

  • 三角関数の問題

    高校数学の問題集を解いていて、このような問題がありました。 半径6cmと2cmで中心間の距離が8cmである2つの円がある。この2つの円の外側にひもをひとまわりかけるときその長さを求めよ。 これを解いたら、8π+8√5cmになりました。 だけど答を見ると28π/3+8√3となっていました。 なぜこうなるのか教えてください。お願いします。

  • 面積の求めかた

    図がなくてすいません。 扇形に円Pが接している。斜線部の面積はいくらか。 ∠AOB=60度 BO=12cmとする。 ∠AOBは60度の扇形 扇形の中に、中心Pの円があり、扇形に接している点は、C,D,Eです。 点CはOAの間、点DはOBの間、点Eは弧ABの間です。 斜線部は点C,O,Dに囲まれている部分です。 円の半径をrとすると、 ∠POD=30度 このあとはよくわかりません。 お願いします

  • 三角関数について

    △ABCにおいて、AB=4,AC=3,∠BAC=60°とする。また、三角形ABCの外接円をKとする。このとき、 BC=√13であり、△ABCの面積をS,外接円Kの半径をRとすると、 S=3√3, R=√39/3である。 (1)点Bにおける円Kの接線と点Cにおける円Kの接線を交点をDとし、直線ADと辺BCの交点をEとする。また、接線BD上に点Bに対して点Dと反対側に点Fをとる。 (図参照) (i)円Kの中心をOとすると、∠BOC=120°だから∠BDC=60°となり、BD=CD=√13である。 (ii)∠ABF=∠BCAだから, sin∠ABD=6/√39となる。 したがって△ABDの面積とT1とすると、 T1=4√3 となる。 同様にして,△ACDの面積をT2とすると, T2=9√3/4となる。 以上より, BE:EC=16:9を得る。