• ベストアンサー
  • 暇なときにでも

メビウス関数、どうしてそのように定義するの?

自然数nにおいて、メビウス関数は次のように定義される(ただし 1 は 0 個の素因数を持つと考える): μ(n) = 0 (n が平方因子を持つ(平方数で割り切れる)とき) μ(n) = (-1)^k (n が相異なる k 個の素因数に分解されるとき) n が相異なる偶数個の素数の積ならば μ(n) = 1 n が相異なる奇数個の素数の積ならば μ(n) = -1 とのことですが、なんの理由、なんの目的があってそのような定義がされるのでしょうか? そう定義すると、メビウスの反転公式などうまくいくというのは分かるのですが、たとえば、メビウスの反転公式を成り立たせるようなμ(n)は、必然的に上述のようになることを示すことはできるのでしょうか?

共感・応援の気持ちを伝えよう!

  • 回答数1
  • 閲覧数1246
  • ありがとう数5

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.1
  • zk43
  • ベストアンサー率53% (253/470)

メビウスの反転公式は、 f(n)=Σ(d|n)g(d)⇔g(n)=Σ(d|n)μ(d)f(n/d) と、fのgによる式と、gのfによる式が反転できる、というものです。 一般に、f,gの乗法積f*gは、 f*g(n)=Σ(d|n)f(d)g(n/d) で定義されるので、上のメビウスの反転公式は、乗法積を使えば、 f=g*1⇔g=μ*f(1はすべてのn≧1に対して1(n)=1を満たす関数) と書けます。 また、乗法積は結合法則((f*g)*h=f*(g*h))を満たします。 ここで、δ(n)=1(n=1のとき)、0(n≧2のとき) という関数δは、任意の関数fに対して、f*δ=fという関係を満たします。 要するに、δは乗法積に関する単位元です。 f=g*1の両辺にμを作用させると、 μ*f=g*(1*μ) となるので、これがgに等しいということは、 1*μ=δ ということです。 要するに、メビウスの反転公式の核となるのは、1*μ=δです。 これは、1の逆元がμということです。 もし、1*ν=δとなるνがμの他にあるとすると、この両辺にμを作用 させると、 μ*(1*ν)=μ*δ (μ*1)*ν=μ δ*ν=μ ν=μ となって、結局νはμと同じものになります。 次に、n=p1^e1…pk^ekと素因数分解されるとき、オイラーの関数を考え ると、 φ(n)=n(1-1/p1)…(1-1/pk)=n(1-Σ1/pi+Σ1/pipj-…+(-1)^k/p1…pk) となるので、上のような定義のメビウス関数μを使えば、 φ(n)=nΣ(d|n)μ(d)/d と書けることが分かります。 カッコの中の分母には平方因子を持たないnの約数がでてきて、符号が 因数の個数により+-になりますので。また、dに平方因子があれば μ(d)=0となって、平方因子を持つ約数の部分が0になりますので。 これが、μの定義が出てきた経緯かと思われます。 ここで、μの性質について調べてみると、 1*μ(1)=μ(1)=1=δ(1) n≧2のとき、nの素因数分解をn=p1^e1…pk^ekとすると、 1*μ(n)=1+Σμ(pi)+Σμ(pipj)+…+μ(p1…pk)=(1-1)^k=0=δ(n) より、1*μ=δとなります。 すなわち、メビウスの反転公式が成り立つことが分かります。 また、このメビウス関数は、ゼータ関数の逆数をとったとき、 1/ζ(s)=Σμ(n)/n^sのように、各項の分子に現れてきます。

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • 3n+1 の素数について

    3n+1 型 の素数の無限性を証明せよ。 次のような証明をしようとしたが、うまくいきません。アドバイスをお願いします。  3n+1型の素数は有限とし、最大な素数をpとする。  k=3(7×13×・・・×p)+1 とおく。  kは合成数であるから、素因数分解され、3n+2型の偶数個の積になる。(3n+1型の最大素数がpであることから)    *このあとの証明がうまくいきません。よろしくお願いします。

  • 4n+1型の素数について

    4n+1型素数の無限性を示せ。 次のように考えた。行き詰まったのでアドバイスをお願いします。 4n+1の素数は有限で最大をpとする。 k=4(5×13×・・×p)+1 とおく。 kは合成数のとき、kは4n+3型の素数の偶数個の積に素因数分解できるから、  k=(4x+1)(4y+1) x,y自然数   =16xy+4x+4y+1  となる。  このあとの矛盾の導き方が見えないので、この流れの証明とすると このあとどうなるのか、よろしくお願いします。

  • √2が無理数であることの証明について

    √2が無理数であることの証明について 一つ疑問が生じまじた。 背理法を用いて、√2が有理数であると仮定すると、 √2=q/p (p,qは自然数)とおけるから 両辺二乗して 2=q^2/p^2 ⇒2*p^2=q^2 ・・・A ここから無限降下法を用いて矛盾を導くのが一般的な解法であると思うのですが、 Aの段階で明らかに(明らかでなくとも、証明すれば)右辺は平方数で左辺は平方数ではありません。 これは矛盾ではないのでしょうか? 例えば、平方数の約数の個数は奇数、非平方数の約数の個数は偶数ということをまず示せば、素因数分解の一意性に矛盾することは言えますが、そのような補題なしに「非平方数=平方数」は矛盾と考えてはいけないのでしょうか? 矛盾と考えていいのであれば一般の非平方数nに対して√nが無理数であることの証明がすごく簡単になるのですが・・・ 解説お願いします。

  • 奇数の定義について

    奇数の定義について 中学生です。 「連続する2つの奇数の積に1を加えると、この奇数のあいだにある偶数の平方になることを証明しなさい」の問題で、答えは「奇数→2n+1 偶数→2n」を定義するのですが、「小さいほうの奇数をXとする」として解きましたら、間違いと指摘されました。でも、問題集によってはXで定義して答えを出しているものもあります。どなたか明確にXでは駄目なことを教えていただけませんか。よろしくお願いいたします。

  • 「n! は平方数にならない」?

     以前,大学の入試問題で(どこ大学かは失念しました), 「1 から 10 までの自然数を 2 グループに分け,それぞれ積をとる。このとき 2 つの積が一致することはあるか」 というものがありました。  答えは「ない」で,それは 10! が平方数にならない,ということなのですが,ポイントとしては,「10 までの自然数の中には 7 の倍数は 1 つしかないから,2 つのグループの一方は 7 の倍数で,他方は 7 の倍数でない,だから一致しえない」ということでした。  そこで疑問なのは,これは一般の 2 以上の自然数 n について,n! は平方数にならないのか,ということです。  これは,【n/2 から n までの間に素数が必ず存在する】ことが証明できればよくて,実際そうであって,「n! は平方数にならない」は真とのことでした。  ところがこの【 】の部分の証明が,簡単に流されているものが多くて,釈然としません。  この証明の全容がわかる文献か,または証明のポイントをご教示願えますか。

  •  高木初等整数論 p85 

    初等整数論で (n/m)は平方剰余のルジャンドルの記号、もしくは,Jacobiの記号とします。水平の-が書けないため。 (記号の説明) φ(m):オイラー関数:mと素である整数の数 Legendreの記号 x^2≡a  (mod.p)が解をゆうするときにaをpの平方剰余、そうでないとき平方非剰余という。 not(a≡0) (mod.p)でないとき、aが平方剰余であるか、非剰余であるかに従って (a/p)=+1または-1 (m/n)の定義 n>1が奇数で,n=pp'p''---が、nの素因数分解でsるとき,(m,n)=1なる整数mに関して (m/n)=(m/p)(m/p')(m/p'')---とする。 右辺は、Legendreの記号 jacobiの記号 (定理) mが平方数でないならば、mを法とするφ(m)個の既約類のうち、半数に属するnに対しては(n/m)=+1、他の半数に対しては、(n/m)=-1 (証明)と続きますが。 mを法とする同一既約類に属するnに対しては(n/m)の値は一定. いまφ(m)個の既約類の代表を(n/m)の値によって+の組と-の組とに分けて、 (+)  a1、―――,an    (a/m)=+1 (-) b1、―――,bn    (b/m)=-1 とする。 a≡1(mod m)であるaなどは+の組に属するが、仮定でmは平方数でないから、-の組も空虚でない。 (質問)mは平方数なら、-の組は空虚は明らかですが、mは平方数でないから、-の組も空虚でないはどうしていえるのでしょうか。わかりやすく説明ください。

  • 素因数分解の問題

    久々に素因数分解の問題を解いてみようとしたところ、いきなり躓いてしまいました。 二桁の整数nに168をかけると、ある数の二乗になりました。この整数nはいくらになるかという問題です。 168を素因数分解し、n×168=n×2^3×3×7となることは分かります。 これから先、どのように組み立てて解けばよいのか分かりません。 解説では、各素数が偶数個になるように解くと書かれており、ある数の二乗になるため、 n=2×3×7×m^2となっていました。 どうしてこのような式なるのですか? A=A^p×b^q×c^rとなっている時、各指数がすべて偶数(2の倍数)なっていれば、Aは何かの二乗になることは確かめてみました。

  • 素数は無限に多く存在することの証明(ユークリッドの別証)を二つの添削

    ユークリッドの証明は背理法を用いた証明。 素数を有限個とするならその最大素数をpnとして素数を小さい順にp1,p2,…,pnとした時 N=p1*p2*p3*…pn + 1 全ての自然数は素因数に分解できるのでp1~pnの少なくとも一つ因数に持つはずだが、どれで割っても1あまる。これはpnが最大の素数であることに矛盾 素数は無限に存在する。 といった証明。今回はこれの別称として以下の漸化式を用いたものを解けという問題です。 ◆a_{n}:=2^(2^n) + 1, n=1,2,3,… を用いた証明 この時任意のm≠nに対しa_{m}, a_{n}は互いに素である。実際n>mの時 a_{n} - 2 = 2^(2^n) - 1     ={2^2^(n-1) + 1}{2^2^(n-1) - 1}     =a_{n-1}*(a_{n-1} - 2)     =a_{n-1}*a_{n-2}*…*a_{m}*(a_{m} - 2) となるのでa_{m},a_{n}の公約数dは2の約数でなければならない。他方a_{m},a_{n}は奇数であるから(←漸化式より)d=1となる。すると各a_nを素因数分解すると少なくとも一つ素因子pnが得られ、これらはnが異なれば一致しない。かくして無限個の素数p1,p2,p3,…,pn,…が得られた□ ◆正整数の列a_nを次のように定める a_{n+1} = a_{n}*(a_{n} - 1) + 1, a_{1} = 2 これを用いて素数が無限であることを示すのですが 任意のm≠nに対して a_{n} - 1 = a_{n-1}*(a_{n-1} - 1)       = a_{n-1}*a_{n-2}*(a_{n-2} - 1)       = a_{n-1}*a_{n-2}*…*a_{m}*(a_{m} - 1) よりa_{n},a_{m}の公約数は1の約数でなければならない。よってa_{n},a_{m}は互いに素である。 すると各a_nを素因数分解すると少なくとも一つ素因子pnが得られ、これらはnが異なれば一致しない。かくして無限個の素数p1,p2,p3,…,pn,…が得られた□ これら2つの証明はこれであっているでしょうか?

  • 素数の分類に関して

    [類題] 「8n + 3 型の素数は無限に多くある事を示せ。」の略解。 *)文中のp^は複素数pの共役な複素数です。例えば、p=1+iの場合、p^は1-iのことです。 また、a2 はaの二乗という意味です。  証明)もし 8n + 3 型の素数が有限個であったとし、その全体を p1, p2, ... , pn とする。 P = p1p2 ... pn + √2 i と置いて、これを単項イデアル整域 Z[√2 i ] で素元分解する。 N (P) = PP^ は奇数であるから(正確には、 N (P) ≡ 3 ( mod. 8 ) 、) P の有理整数の素因数は奇数である。この因子は PP^ の中では偶数冪で出てくるから、その部分は 8n + 1 型である。又、 P は有理整数に同伴でないから、a + b √2 i 型 (b ≠ 0, 有理整数の素因子と同伴でない物) の因子がある。PP^ は奇数であるから a は奇数である。更に、この a + b √2 i 型の因子の b が偶数であるとすると、 N( a + b √2 i ) = a2 + 2b2 ≡ 1 (mod. 8) であるから、 この形の b が全て偶数であるとすると PP^ ≡ 3 (mod. 8) と矛盾する。従って b が奇数の物 a + b √2 i が有るが、素元分解の一意性により、N( a + b √2 i ) = a2 + 2b2 は素数であり a2 + 2b2 ≡ 3 (mod. 8) となり有限性に矛盾。故にこの型の素数は無限個。 この証明における、この因子は PP^ の中では偶数冪で出てくるから、その部分は 8n + 1 型である。がなぜ言えるのかという点と 最後の一文である 素元分解の一意性により、N( a + b √2 i ) = a2 + 2b2 は素数であり a2 + 2b2 ≡ 3 (mod. 8) となり有限性に矛盾。 における a2 + 2b2 は素数であり a2 + 2b2 ≡ 3 (mod. 8)がなぜ分かるのかが理解できません。 よろしくお願いします。

  • modを使用した平方根の求め方

    解き方が解からない問題があります。 どれだけ考えても解き方がわからないので、どなたかわかる方教えてください。 【解き方が解からない問題】 大きな素数の積n=pqが与えられた時、nを素因数分解するのは非常に難しい。 整数mと整数y(<m)が与えられた時y=x2(xの二乗) mod mなる整数解xが存在すれば、yは mod mで平方剰余であるという。 xを mod mでのyの平方根という。 mが素数7の時、 12(1の二乗の事です。二乗の書き方がわからなくて・・・)≡1 (mod 7) 、 22(2の二乗) ≡ 4 (mod 7) 32(3の二乗)≡2 (mod 7) 、 42(4の二乗) ≡ 2 (mod 7) 52(5の二乗)≡4 (mod 7) 、 62(6の二乗) ≡ 1 (mod 7) となるので、1、2、4が平方剰余で、各平方剰余には2個の平方根がある。 mが二つの素数の積の場合、4個の平方根がある。 ここまでが参考書に載ってる説明です。 ここから私がわからない問題です。 102(10の二乗) mod 77=23 n = 77 の素因数7と11から素因数の知識を利用してZのmod nでの平方根Sを計算する。 S2(Sの二乗) ≡ 23 mod 7 S2(Sの二乗) ≡ 23 mod 11 上の2つを解いて、mod 77での4つの平方根10、32、45、67を得る。 この2つの式から、何をどうやって計算して、4つの平方根10、32、45、67が導き出せたのかわかりません。 二乗の表記の仕方がわからず、とても見難くなってしまいました。すみません。 乱文になってしまいましたが、どなたかわかる方教えてください。 よろしくお願いします。