• ベストアンサー

相加平均・相乗平均の問題

こんばんは~。相加平均相乗平均の問題です。 a>0、b>0のとき、次の不等式を証明せよ。 また、等号が成り立つ場合を調べよ。 a+2/a ≧ 2√2 この問題の左辺≧右辺という証明まではできたんですが、 等号が成り立つ場合の証明ができませんでした。 参考書には a=2/aより √2となる。 と書いてありました。 この問題は不等号を等号に変えるだけで解けるはずなのに、 つまりa+2/a = 2√2と等号に変えるだけでいいはずです。 でも、参考書の説明はいきなりa=2/aとなっているのですが、 これはどういうことなのでしょうか?

質問者が選んだベストアンサー

  • ベストアンサー
  • debut
  • ベストアンサー率56% (913/1604)
回答No.2

a>0、b>0のとき、a+b≧ 2√abで 等号は a+b=2√ab で 2乗して因数分解すると (a-b)^2=0よりa=b という結果を使っただけです。 もちろん、a+2/a = 2√2を解いても a^2-(2√2)a+2=0 (a-√2)^2=0 a=√2 です。

ike_1989
質問者

お礼

回答ありがとうございました。 =で結んでも困ることがないのならそれでいいですね。 ほんとにありがとうございました

すると、全ての回答が全文表示されます。

その他の回答 (1)

  • koko_u_
  • ベストアンサー率18% (459/2509)
回答No.1

>a+2/a = 2√2と等号に変えるだけでいいはずです。 うん。それでもイイよ。 模範解答は「相加相乗平均」の定石にそっているだけです。

すると、全ての回答が全文表示されます。

関連するQ&A

  • 相加・相乗平均は最小値を示すのでしょうか?

    相加相乗平均の証明なのですが、高等学校の教科書には a>=0, b>=0の時、(a+b)^2>=(2√ab)^2で 左辺-右辺=a^2+2ab+b^2-4ab=a^2-2ab+b^2=(a-b)^2>=0 と証明が書かれています。等号が成り立つのはa=bとなっています。 でも、相加相乗平均が最小値になるとはいえないと思うんですよ。 例えば (a+b)^2>=(√2ab)^2とします。 左辺-右辺=a^2+2ab+b^2-2ab=a^2+b^2>=0となり a+b>=√2abということも言えます。等号条件はa=b=0となります 。2√ab>√2abですから相加相乗平均が最小値には思えません。 しかし、2^X+2^(-X)の最小値を求めようとした時。相加相乗平均では2以上になりますが、先ほどの方法では√2以上になります。 ただし、2^Xも2^(-X)も0にはなりませんし、等号条件も成り立ちませんので先ほどの方法では間違っていると思えるのですが、根拠がわかりません。分かる方がいたら是非教えてください。

  • 相加・相乗平均を使う不等式

    相加相乗平均を使う不等式の問題で分からないものがあります。 a,b,c,dは全て正の数として *(a+2/b)(2b+1/a)≧9 を証明する問題では、左辺を展開した後に相加相乗平均を使って証明をしてますよね。 ですが *(a+2b)(2c+d)≧8√abcd のときには a+2b≧2√2ab 2c+d≧2√2cd を証明して二つをかけ合わせますよね? このとき方の違いはどうしてでしょうか? 上の問題の方では、下のようなとき方をしてはいけないと習った気がするのですが・・・・

  • 相加・相乗平均の問題

    相加・相乗平均の問題 √ab ≧ 2/(1/a + 1/b) を相加・相乗平均を使ってどうやって証明するのですか??

  • 相加平均、相乗平均

    数学II 相加平均、相乗平均 A,Bは正の定数とする。 (A+2/B)*(B+2/A)≧8を証明しなさい。 という問題なのですが、どうも理解できません。 この問題はもとより、相加平均、相乗平均についても教科書や参考書を読みましたが理解ができません。 どうか、わかりやすくお教えねがえませんでしょうか? お願いいたします。

  • 相加平均 相乗平均って、、、

    普通の不等式の証明と、相加平均、相乗平均の関係を使った不等式の証明がありますよね。どういう場合に応じて使い分けたらいいのかわかりません。教えてください。

  • 相加相乗平均について

    今学校で相加相乗について習っているのですが 3文字の相加相乗で x+y+z≧3(xyz)^(1/3)となるのは解るのですが x+y+zをまず x+yで相加相乗を使い、2(xy)^(1/2)とし、 さらに2(xy)^(1/2)とzでもう一回相加相乗をつかって 2( 2(xy)^(1/2)*z )^(1/2) とするのは間違いなのでしょうか? x+y+z≧3(xyz)^(1/3)では等号はx=y=z x+y+z≧2( 2(xy)^(1/2)*z )^(1/2)では等号はx=y=2zとなってしまいます。 授業では4文字の相加相乗平均a+b+c+dをa+b c+dと分け 2文字の相加相乗を三回使い証明していましたが三文字の場合では違うのでしょうか 自分でいろいろ考えたのですが、よく解りません。 どなたかわかる方宜しくお願いします。

  • 相加平均≧相乗平均が通じない場合・・・

    相加平均≧相乗平均が通じない場合があったと思うのですが忘れてしまいました。 たしか、相乗平均が定数にならない場合だったと思うのですが、 でもって、左辺のグラフと右辺のグラフを書いてみると、 左辺=右辺の場合(グラフが接しているとき)の変数(仮にxとします)の値と、 左辺が最小値をとるときのxの値が異なる・・・と記憶しているのですが、 具体例を忘れてしまいました。 どなたか,具体例と解説をお願いできないでしょうか?

  • 相加平均と相乗平均の関係の意味

    (相加平均)≧(相乗平均)はわかりました。 さらに、これを利用すると様々な不等式が証明できることもわかりました。 (分かったといっても初歩的なところですが) ただ、証明問題が、印象として、(相加平均) ≧ (相乗平均)を使わせるための証明問題というように感じてしまいます。 それは、(相加平均) ≧ (相乗平均)の意味を理解していないからだと思うのですが、この関係はそもそもどんな意味があるのでしょうか。 漠然とした質問ですがお教えください。

  • 相加・相乗平均の関係

    相加・相乗平均の関係について質問です。 相加・相乗平均の式は、不等式の証明等でよく使いますし、なかなか自分でも使い慣れてきたとは思うのですが、考えてみると、どうして成立するのか。そもそも、どうして相加・相乗平均の式で最小値が求まるのか、疑問がわいてきました。そこで質問なのですが、相加・相乗平均の式の意味を教えてください。あともう一点、もし証明するようなことが可能であれば、証明の仕方を教えてください。大学受験レベルでは必要ないでしょうか?よろしくお願いいたします。

  • 相加相乗平均の証明問題

    a>0、b>0のとき、不等式(a^2 + 4) / b + (b^2 + 4) / a≧8が成り立つことを証明するという問題で、 相加相乗平均を用いて、 a^2 / b + 4 / a + 4 / b + b^2 /a ≧4√(a/ b) + 4√(b/ a) として、もう一度相加相乗平均を用いて、 4√(a/ b) + 4√(b/ a) ≧2√(4√(a/ b) ・4√(b/ a) )=8 と変形するやり方 や a^2 / b + 4 / b ≧ 2√(a^2 / b・4 / b)と b^2 /a + 4 / a ≧ 2√(b^2 / a・4 / a) のように分けて、 4a / b + 4b / a ≧ 2√4a / b・4b / a を証明するやり方 は間違っていますか?

TD-2135N/2135NSAエラー発生
このQ&Aのポイント
  • ロール紙の交換後、TD-2135N/2135NSAで「用紙の状態を確認してください」のエラーが発生し、解消できません。
  • お使いの環境や接続方法、関連するソフト・アプリ、電話回線の種類について教えてください。
  • この質問はブラザー製品に関するものです。
回答を見る

専門家に質問してみよう