• 締切済み
  • 暇なときにでも

色々な空間の包含関係を知りたく思ってます。ベン図は

内積空間,線形空間,ノルム空間,正規直交空間,位相空間,T1空間,ハウスドルフ空間,バナッハ空間,ヒルベルト空間,正規空間,正則空間,距離空間 などなど でどの空間がどの空間を含んでいるのか包含関係を知りたく思っています。 色々な空間の包含関係をベン図で図解してあるサイトをお教え下さい。 そのようなサイトが無ければ"⊂"でお教え下さい。

共感・応援の気持ちを伝えよう!

  • 回答数1
  • 閲覧数542
  • ありがとう数0

みんなの回答

  • 回答No.1

位相空間、分離公理で検索してみてください。 T2 ⇒ T1 ⇒ T0 . 正則なら T2 . 正規なら T2 . 培風館「集合・位相空間要論」青木利夫・高橋渉著p.98に位相空間の包含の図がでています。距離空間が位相空間のすべてに含まれて書いてあります。 第5章バナッハ空間、第6章ヒルベルト空間となっています。 関数空間・直交性、完全正規直交性など。 位相空間、関数空間など、教科書を1冊手許に置くことをおすすめします。

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • 位相空間

    正規空間⇒正則空間⇒ハウスドルフ空間 が成り立つことを教えてください。 また、T3空間であるが、T1空間でない位相空間の例。 T4空間であるが、T1空間でない位相空間の例を教えてくださいm(__)m わかるところだけでもよいのでお願いします!!!!

  • 線形代数の空間

    線形代数の空間に関する名称の違い 線形代数を勉強しています。 ベクトル空間(vector space)、 線形空間(linear space)、 アフィン空間(affine space) の3つは同じものなのでしょうか。 また、 内積空間(inner product space)、 計量ベクトル空間(metric vector space)、 前ヒルベルト空間(pre-Hilbert space)、 ユニタリ空間(unitary space) の4つも同じものとして記述されているのをネット上で見かけたのですが、これらには違いがありますか。 別物だとしたら違いを、同じものだとしたらどのように使い分けられるのか教えてください。 その他にもノルム線型型空間、数ベクトル空間、ユークリッド空間、ヒルベルト空間、バナッハ空間と、様々な名前の空間があり、なかなか整理して理解できません。 特にノルム線型空間などは内積空間と区別がつかないのですが、やはり違う空間なのでしょうか。 たくさん考案されたのには、各々それなりの必要性や特色があると思うのですが、こういった空間はそれぞれどういった物理現象を記述する(または計算する)ために考え出されたのでしょうか。 基本的な質問かもしれませんが、どなたかご存じの方、よろしくお願いします。また、こういった空間についてまとまった記述のあるウェブサイト(日or英)などをご存じでしたら教えていただけると幸いです。

  • x1,x2,…,xn:正規直交Σ[i=1..n]|<x,xi>|^2≦∥x∥^2且つx-Σ[i=1..n]<x,xi>xi⊥xj (∀j)

    こんにちは。 [定理]x1,x2,…,xnが内積空間Xでの正規直交集合とする。 x∈Xの時, Σ[i=1..n]|<x,xi>|^2≦∥x∥^2 且つ x-Σ[i=1..n]<x,xi>xi⊥xj (∀j) はどのようして示せばいいのか分かりません。 何卒,ご教示ください。 尚, 内積の定義は複素線形空間Vの任意の要素x,yに対して複素数<x,y>が定まり,次の4条 件を満たす時<x,y>をxとyの内積といい,内積が定義されている空間Vを内積空間と言 う。 (i) <x,x>≧0; <x,x>=0⇔x=0 (ii) <x,y>=<y,x>~ (~はバーを表す) (iii) <x+y,z>=<x,z>+<y,z> (iv) <αx,y>=α<x,y> ノルムの定義はVを線形空間とする。Vの任意の要素xに対して,次の条件を満たすような実数∥x∥がある時,∥x∥をxのノルムという。 (i) ∥x∥≧0;また∥x∥=0⇔x=0 (ii) ∥αx∥=|α|∥x∥ (iii) ∥x+y∥≦∥x∥+∥y∥

  • C^nがヒルベルト空間であることの証明

    C^nを複素数のn個の項x=(α_1,…,α_n)の空間とする。 x=(α_1,…,α_n)、y=(β_1,…,β_n)をC^nの元とするとき、内積を (x,y)=Σ^(n) _(i=1)α_i・(*β_i) (*β_iはβ_iの共役複素数) と定義する。 このとき、C^nがヒルベルト空間であることを証明せよという問題がわかりません。 教科書にヒルベルト空間の定義が「内積空間で(x,x)=||x||^2によりノルムが定義された完備な空間」と書いてあったので、C^nが内積空間であることは示せたのですが、完備である(コーシー列が収束する)ことが示せません。 C^nからどのようにコーシー列をとって収束することを示せばよいのでしょうか? ちなみに教科書には X:ノルム {x_n}をXの元の数列とし、Xのある元xがあって ||x_n-x||→0 (n→∞) となるとき{x_n}はxに収束する とありました。 よろしくお願いします。

  • 同値なノルムについて教えてください><

    同値なノルムについて教えてください>< 問題で考え方がわからないのでどなたか教えていただけないでしょうか>< 問、ノルム||・||1において線形空間Xが完備ならば、||・||1に同値なノルム||・||2においても完備であ  ることを示せ。 です。どう証明すればいいのでしょうか?「同値ならバナッハ空間の構造も同じ」と参考書に書いてあり、それならば||・||2においても完備なのは当たり前じゃないかと思ってしまうのですが・・・ ご指導のほう、よろしくお願いいたします!!

  • アフィン空間 ユークリッド空間 ベクトル空間

    アフィン空間についていろいろ勉強しているのですが、なかなかわからなくて・・・もう何度質問したことか>< アフィン空間はベクトル空間ではないと思っているのですが、アフィン空間とベクトル空間が同じになる場合があるのでしょうか? 一次結合の係数和が1の時、アフィン空間=ベクトル空間となるのでしょうか? また、アフィン空間はユークリッド空間から絶対的な原点・座標を取り除いた空間ですよね(wiki参照)。以前の質問で、計量の有無はアフィン空間であるか否かには関係無いとの事でした。 ということは、アフィン空間はベクトル空間ではないが位相空間、計量を定義すれば距離空間となるのでしょうか? 私のイメージでは、 ある集合→(ベクトルを定義)→ベクトル空間→(位相を入れる)→位相空間→(ノルム・内積を定義)→距離空間 なんですが・・・ アフィン空間はこのイメージから外れてしまって良くわからないのです・・・

  • 正則かつ非正規である位相空間

    正則空間であり正規空間でないような位相空間の例を教えてください。 (証明は書かなくても構わないです。ただできれば、位相を開集合系、閉集合系、 近傍系、基本近傍系、開集合系の基底のどれか一つのみで定めてください)

  • ディラック流の量子力学っておかしくないですか?

    Qを位置演算子とするとき、Q|x>=x|x>というような書き方をしたりしますけど、これって連続固有値をあたかも離散固有値でかけるかのような書き方をしていますよね。これによると正規化は<x'|x>=δ(x'-x)にならざるを得ませんが、しかし内積がδ関数の値で与えられるとなると、これはまともなヒルベルト空間とはもう思えません。<x|x>=∞であって、しかもこの∞もただの∞ではなくて面積が1になるような∞です。内積が発散してしまうわけだから、Qは有界作用素ではありえず、しかも|x>は点スペクトルにはなりえません。数学的には作用素論で、連続スペクトルが生じる場合もうまく扱えますが、この場合は点スペクトルと考えない方が自然だと思います。まあ物理だからいいとしましょう、ってことになるかとは思うのですが、先日とあるところで、ヒルベルト空間を拡張した、何たらヒルベルト空間というのがある、というのを小耳に挟みました。それによると、L^2空間のようなヒルベルト空間には、ディラックのδ関数は普通は含まれはしないですが、δ関数や、あるいはe^{imx}のようなノルムが発散するような関数も含めたようなヒルベルト空間もどきを考えることができる、とのことでした。量子力学をうまく表現するための空間という印象だったのですが、そのような数学的対象がきちんと定義されるのか知りたく思います。よろしくお願いします。

  • ノルムの定義のより一般への拡張は?

    いつもお世話になっております。 R線形空間Vに対し,下記を満たすf:V→Rなる写像fが採れる時, そのfをノルムと言い,Rをfによるノルム空間と言う(Rは実数体)。 (i) f(x)≧0;f(x)=0⇔x=0 (ii) f(rx)=|r|f(x) (r∈R) (iii) f(x+y)=f(x)+f(y) がノルム空間の定義だと思います。 これをより一般に定義拡張したいのですがその場合 全順序体F上の線形空間Vに対し,下記を満たすh:V→O(Oは全順序環)及びk:F×O→O及びd:F→Fなる写 像h,k,dが採れる時, そのhを内積と言い,Vをh,k,dによる内積空間と言う。 x,y∈V,f∈F (i) P(h(x),0_O)=true ;h(x)=0_O⇔x=0_V (PはOの順序関係、0_O,0_Vは夫々O,Vの零元) (ii) h(fx)=k(d(f),h(x)) (d(f)=f (Q(f,0_F)=trueの時、d(f)=-f (Q(0_F,f)=trueの時)) (iii) h(x+y)=h(x)+h(y) で正しいでしょうか? また、これから更に定義の拡張は可能でしょうか? 宜しくお願い致します。

  • ベッセルの不等式(ヒルベルト空間)がわかりません。

    『ヒルベルト空間と線型作用素(日合、柳)』を独習しています。 ヒルベルト空間 をHとします。 e_n⊂Hが正規直交系ならば、任意のx⊂Hに対して ||x||^2≧Σ|〈x,e_n〉|^2 が成り立つ(ベッセルの不等式) とあります。 この式の右辺は収束するとあるのですが、何故収束するのかがわかりません。 ヒルベルト空間上のノルムは有限の値しか取らないからなのでしょうか? だとしたら、その根拠は何でしょう?どの定理や定義から言えるのですか? 程度の低い質問で申し訳ないのですが、どなたか教えていただけると助かります。 よろしくお願いします。