• ベストアンサー

正四面体の頂点を求める問題

正四面体ABCDにおいて A(1,3,0) B(3,5,0) C(3,3,2) のとき、最後の頂点Dの座標をもとめる問題を教えて下さい。 幾何学的に2つ解がありそうなイメージはあります。 まず、AB間の距離が2√2であることを求めました。 そこでDの座標を(x,y,z)とし、Dは、A,B,Cからそれぞれ等距離(2√2) であることから次の連立方程式を立式しました。 (x-1)^2+(y-3)^2+z^2=8     ・・・・(1) (x-3)^2+(y-5)^2+z^2=8      ・・・・(2) (x-3)^2+(y-3)^2+(z-2)^2=8    ・・・・(3) これを以下のとおり計算して、 (1)-(2)より、 x+y=6  ・・・(4) (2)-(3)より、 y-z=3  ・・・(5) (1)-(3)より x+z=3   ・・・(6) の3本の一次式を得ましたが、(4)=(5)+(6)となってしまい、 解を特定できなくなってしまいました。 立式の方針に間違いがあるのでしょうか、あるいは、なにか 見落としがあるのでしょうか?

  • funoe
  • お礼率95% (42/44)

質問者が選んだベストアンサー

  • ベストアンサー
回答No.1

(4),(5),(6)より y = 6 - x z = 3 - x (1)に代入して (x-1)^2 + (3-x)^2 + (3-x)^2 = 8 二次方程式をたすきがけによって解く。

funoe
質問者

お礼

確かに解けました。ありがとうございました。

その他の回答 (1)

  • h191224
  • ベストアンサー率81% (119/146)
回答No.2

(4)=(5)+(6)は、実は当たり前です。 3元連立方程式の2個ずつを加減して3個の式を導いてしまうと、必ずこのようになります。 消去法の視点からは、2個が導ければ良いわけで、(4)~(6)のうちの任意の2式から、変数3個のうちの2個が消去できてしまいます。 たとえば(4)(5)からなら、 x=6-y z=y-3 が得られ、これを(1)に代入すれば、yだけの2次方程式になります。 この2次方程式は簡単に因数分解できて、解けてしまいます。

funoe
質問者

お礼

ありがとうございました。

関連するQ&A

  • 正四面体 第4の頂点

    正四面体の3つの頂点の座標がA(2,-1,3) B(5,2,3) C(2,2,0)であるとき、第4の頂点Dの座標を求めよ。という問題で疑問がわきました。 Dの座標を(x,y,z)とする。 自分は、AD²=BD²=CD²より (x-2)²+(y+1)²+(z-3)²=(x-5)²+(y-2)²+(z-3)² から x+y=4 (x-5)²+(y-2)²+(z-3)²=(x-2)²+(y-2)²+z² から x+z=5 (x-2)²+(y-2)²+z²=(x-2)²+(y+1)²+(z-3)² から y-z=-1 これらを連立方程式を解くようにしたら、0=0となり、答えが求まりませんでした。 問題集では、 正四面体一辺の長さはAB=|AB→| (ABベクトルを左のように書かせてもらいます。)|AB→|=√(5-2)²+{2-(-1)}²+(3-3)²=√18 ゆえにAD=BD=CD=√18 すなわち AD²=BD²=CD²=18より、x+y=4とx+z=5を(x-2)²+(y+1)²+(z-3)²=18に代入してxの2次方程式 x²-6x+5=0を解いて答えをだしています。 なぜ自分の使った連立方程式では解けないかを説明してください。お願いします。

  • 数学Bの空間ベクトルの問題です

    ○A(0,1,-2)B(2,3,-2)C(0,3,0)とDを頂点とする正四面体ABCDの頂点Dの座標を求めよ。 ○3点A(1,1,-1)B(0,3,-3)C(-1,2,1)から等距離にある点P(x,y,z)についてy,zをxで表わせ。 また、線分APの長さの最小値と、そのときの点Pの座標を求めよ。 この2問が何度やっても解けません。 お願いします。

  • 空間図形の問題です。

    正四面体ABCDがあって、A.B,Cの座標はそれぞれ(0.0.0),(0.4.0),(3,2,√3)である。  (1)頂点Dの座標を求めよ この問題の教科書の解答の意味がわかりません。 解答 ⇔AB^2=BC^2=CA^2=16であるから、 正四面体の一辺の長さは4である。Dの(x、y、z)とすると、AD=4で、AD→はAC→、AB→と60°の角をなす。 質問1:なぜ、AB^2=16なのですか?AB=4だからですか?ではどうしてBCやCAまで4なのですか? 理由はA(0.0.0)B(0.4.0)ここから0-0.4-0.0-0をして AB間は4としたのですか?でもBC間は、B(0.4.0)C(3.2.√3)なので、BC間は4にはなりそうに無いのですが。。別のやり方ですか?? また、正四面体と記載されてるので、長さは全て同じと言うのは理解してますけど。。ABとBCみても合わないので混乱してます。 続き→ よって|AD→|^2=x^2+y^2+z^2=16 ....(A) 質問2.なぜですか??>_<?公式ですか?? 続き→ AD→・AC→=3x+2y+√3z=4・4cos60°=8......(B) AD→・AB→=4y=4・4cos60°=8 ∴y=2 .....(C) (C)と(A),(B)から x^2+z^2=12 , 3x+√3z=4 .....(D) xを消去して 3z^2-2√3z-23=0 ∴z=(√3+6√2)/ 3 (D)より x=(3-+2√6)/3 (zとxは複合同順) よって、点Dは二つ定まり、その座標は D( (3±2√6) / 3 , 2 , (√3-+6√2) / 3 (複合同順) →質問3、AD→・AC→=3x+2y+√3z=4・4cos60°=8......(B) AD→・AB→=4y=4・4cos60°=8 の式で、3x+2y+√3zとなるのは単純に(x.y,z)と(3.2.√3)を互いに掛けてるだけなのは理解したのですが、その後ろの4・4cos60°となぜなるのかわかりませんでした>_< だれか教えてください、宜しくお願いします>_<

  • 4点を通る球の式を求めたい。

    4点を通る球の式を求めたいのですが、 ネットなどを調べてもやり方が分からず、悩んでおります。 与えられた4点a,b,c,dから円の中心の座標(A,B,C)が求まれば、そこから半径rも求まり、 (x-A)^2+(y-B)^2+(z-C)^2=r^2 という式が導けると思うのですが。 考えた方法としては、 3点を通る平面の式 3点A:(x1,y1,z1)、B:(x2,y2,z2)、C:(x3,y3,z3) {(y2-y1)(z3-z1)-(y3-y1)(z2-z1)}(x-x1)+{(z2-z1)(x3-x1)-(z3-z1)(x2-x1)}(y-y1)+{(x2-x1)(y3-y1)-(x3-x1)(y2-y1)}(z-z1)=0 を利用して、 点(a,b,c),(b,c,d),(c,d,a)を通る平面の式を求めて、その3平面が交わる点が球の中心座標。 または、球は中心座標から、与えられた4点までの距離がすべて同じなので、2点間の距離の公式を用いて、 与えられた4点への距離がすべて等しい点を求めることが出来るのではないか。 というのが思いついたのですが、実際にそれを解こうとすると出来ません。 どなたか、方法をご存じの方いらっしゃらないでしょうか?

  • 数学の問題です

    初めて質問させていただきます。 4点A(2,1,-3),B(-1,5,-2),C(4,3,-1),D(x,y,z)が平行四辺形ABCDの頂点となるように、x,y,zの値を定める。 という計算があるのですが、解き方が分かりません。計算の途中式(解説)を教えていただきたいです。 なお、解答がx=7,y=-1,z=-2 となります。 よろしくお願いします。

  • 空間のベクトルの問題です。

    (1)点A(-2,3,2)を通り、直線(x-1)/4 =(y-2)/5=-z+2を含む。 この問題は、まず私は、媒介変数tを用いて、直線の式を変形しました。 すると、x-1=4t。 y-2=5t、z-2=-t これより、x=4t+1、y=5t+2、z=-t+2 t=0の時と、t=1の時を考えて、 (x、y、z)=(0.2.2)と(5,7,1)となりました。 これに、点A(-2,3,2)を通る平面を考えればよいと考えました。ax+by+cz+d=0の式に上の三つをそれぞれ代入したら 2b+2c+d=0 , 5a+7b+c+d=0 , -2a+3b+2c+d=0 これら三つの式が得られたのですけど、このあとの計算が何度やってもできませんでした>_< 今までは、文字が4つある式の場合は、4つの式で連立方程式を求めて、abcdを求めていたのですが、空間のベクトルから、三つの式で作るのを学んでから、思うようにできませんでした>_< 誰か教えてください。 (2)3点A(-1、-4,0) B(-2,0.2)、C(0.1.1)を通る。 (2)は、これら三つを通るという平面なので、これも三つそれぞれ 平面の公式ax+by+cy+zに代入して、 -a-4b+d=0 , -2a+2c+d=0 , b+c+d=0 とまでは求まったのですけど、 この後の計算ができませんでした>_<;;; どなたか教えてください。よろしくお願いします!!

  • 中3の数学の問題について質問です

    「放物線y=(2/9)x^2と直線y=(2/3)x+4の交点をA,Bとする.ただしAのx座標はBのx座標より大きいものとする.また放物線上にΔOAB:ΔCAB=9:7,ΔOAB:ΔDAB=9:7となる点C,Dをとる.ただし点Cのx座標は点Dのx座標より小さいものとする.四角形ABCDの面積を求めよ.」 という問題で答えが196/9と出ました.ですが不安です.あっていますか? (過程) A(6,8),B(-3,2),C(-1,2/9),D(4,32/9)と出ました.ΔOAB=18と求まるからΔDAB=14.直線BDを求めた後ΔCDB=70/9とでるから,14+70/9=196/9

  • 助けてください!!!二次関数放物線と図形の問題について

    助けてください!!!二次関数放物線と図形の問題について 図のように放物線y=1/3x2乗 上に点Aがあり、長方形ABCDの辺BCはx軸上にあり、点Dは直線y=-1/2x+3 上にある。ただし、Aのx座標は正、Cのx座標はBのx座標より大きいとする。 長方形ABCDが正方形になるとき、点Aの座標を求めなさい   ←これがどうしても解けません; どうやって解けばいいのか解き方を教えてください・・・。 主に座標をどうやって取ればいいのかなど、詳しく教えていただければ嬉しいです

  • 円と直線の問題

    円C (x-2)^2+y^2=1と直線 y=axが異なる2点A、Bで交わるとき、線分ABの中点をP(X,Y)としたときにX、Yがみたす式(どんな図形上にあるか)を求めたいのですが、うまくいきません。 私はまず交点のx座標をα、βとおいて、これは(x-2)^2+y^2=1にy=axを代入した2次式 (a^2+1)x^2-4x+3=0の2解となるから、解と係数関係からα+β=4/(a^2+1)、 よってy=ax上の2点A、Bのy座標はaα、aβとなるので、中点P(X,Y)について X=(α+β)/2=2/(a^2+1)、 Y=(aα+aβ)/2=2a/(a^2+1) として、aを消そうにも消せなくなりました。何が悪いのでしょうか?教えてください。あ、でも図形的に考えるのではなくあくまでこの方針でまずはお願いします。長くてすみません。

  • エジプト分数問題:修正文

    式1: P + z = 4y(xz-1) 式2: P + a = (4ab-1)(4c-a-1) Pは 24n+1 (nは自然数) 型の素数であるとする。   式1の導出:L=4xyz-4y-z    M=xz-1 のとき 4/L=1/xyLM +1/xyL +1/yM が成り立ちます。     そして、P=Lとおいて式を変形すれば式1が導かれます。   式2の導出:  4/P =1/(6n+k) +1/H +1/J 4/P-1/(6n+k)=1/H +1/J P=24n+1 とおき、 (4k-1)/(24n+1)(6n+k)=1/H +1/J ここで、HとJを変形して (4k-1)/(24n+1)(6n+k)=(4k-d-1)/Pdm(4k-d-1)                                                      +d/Pdm(4k-d-1)                6n+k=4kdm-dm(d+1) から      k=c、d=a、m=b として4を両辺にかけると         24n=16abc-4c-4ab(a+1)                  =(4ab-1)(4c-aー1)-a-1                24n+1+a=(4ab-1)(4c-a-1)                P+a=(4ab-1)(4c-a-1) となる。       素数Pに対して z を動かして式1の解(x、y、z)      が存在するか確かめる。もし(x、y、z)が存在するなら素数P            は単位分数分解の解が存在する。       もし、式1の解が存在しないのなら、aを動かして式2の解            (a、b、c)が存在するか確かめる。もし存在するなら素数Pは      単位分数の解が存在する。もし、式1と式2の単位分数分解の      解が存在しない場合、そのことを私に教えてほしいのです。        一応素数Pがどれぐらい3つの単位分数の解が存在するか      調べてみたのですが、少なくともPが1000以下の場合には      解がすべて存在することが調べて分かっています。知りたい      のは式1と式2を同時に成り立たせない素数Pがあるかという      ことが知りたいです。もし、すべての素数で反例がないことが      分かったのならエジプト分数の予想は正しいことになります。      ただ、多分反例が見つかると本人は思っています。      P=937 の場合(例1)     z=3、P+3=4y(3x-1)=940=4・5・47        P+3=4・47・(3・2-1)    (x、y、z)=(2,47,3) なので解が存在する。          P=1009 の場合(例2)               a=3、P+3=(12b-1)(4c-4)    1012=4・23・11=4(12b-1)(c-1)    (a、b、c)=(3,2,12)、(3,1,24)    が成り立ち P=1009 も解が存在する。