• ベストアンサー
  • 暇なときにでも

n階線形微分方程式

こんな問題です。 定数係数n階線形微分方程式 y^(n) + p1y^(n-1) + p2y^(n-2) + … + pny = 0 (ただしp1,p2…pnは定数)の解y1,y2…ynの線形和 y =ΣCiyi(Ciは定数) が再び解になることを証明せよ。 これってどうすればいいのでしょうか?

共感・応援の気持ちを伝えよう!

  • 回答数2
  • 閲覧数226
  • ありがとう数0

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.2
  • zk43
  • ベストアンサー率53% (253/470)

微分作用素は線形だから、 y^(k)=Σciyi^(k)(k=0,1,2,…,n) が成り立つ。 これで、y^(n)+p1y^(n-1)+p2y^(n-2)+…+pnyを作ってみれば、 Σの中がCiでくくれて、yiが解であることから、0になる。 k階の微分作用素をD^(k)と表わすと、D^(k)y=y^(k)で、この微分方程式 は、 (D^(n)+p1D^(n-1)+p2D^(n-2)+…pn)y=0 と表せ、yにかかっている微分作用素をD1とおくと、 D1y=0 と表せる。 D1はD1(c1y1+c2y2)=c1D1y1+c2D1y2のように線形の性質がある。 (これが線形微分方程式の線形といわれるゆえんである。) つまり、D1は関数空間の間の線形写像になっている。 D1y=0の解を求めるということは、線形代数でいうところの線形写像D1 の核(kernel)を求めるということで、当然、解全体の集合は線形空間 (部分空間)をなしている。したがって、解の線形結合も解になってい る。

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • 2階非同次微分方程式の問題

    2階線形非同次微分方程式 y"-9y=3x^(3) 基本解y1=e^(3x),y2=e^(-3x) 基本解の定数係数の線形結合を u1(x)=a11*y1(x)+a12*y2(x) u2(x)=a21*y1(x)+a22*y2(x) とするとき、u1(x),u2(x)が2階定数係数同次微分方程式y"-9y=0の基本解となる条件を述べ、理由を説明せよ。 という問題があり、どこから手をつけたら良いかわからない状況です。どなたか教えて頂けたらと思い、質問しました。宜しくお願いします。

  • 微分方程式について

    微分方程式の問題について2つほど聞きたいことがあります。 (1)y''+y'-2y=10 (1)の問題は、y''+y'-2y=0と考えて解いていいんですよね? 定数係数2階線形同次方程式と呼ばれるもので良いんですよね? (2)S(x)=(x^4)/(2×4)+(x^6)/(2×4×6)+(x^8)/(2×4×6×8)+・・・とする。このとき以下の問いに答えよ。 (1) S(x)が満たす1階の微分方程式を求めよ。 (2) 上記の微分方程式を解いてS(x)を求めよ。 という問題です。このような形の微分方程式はあまり見慣れません。 どのように解いていけばよいのかよく分かりません。 色々とお聞きしてしまい、申し訳ないんですが、よろしくお願いしますm(_ _)m

  • 微分方程式の質問です。

    微分方程式の質問です。 定数係数2階線形D.E.の一般解を求める問題で、特殊解は定数変化法で求めなければいけません。 y″+4y=4/sin2x です。 解けなくて困っています。 回答おまちしております<(_ _)>

その他の回答 (1)

  • 回答No.1
  • Tacosan
  • ベストアンサー率23% (3656/15482)

代入する.

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • 未定係数法は一階の線形微分方程式にも使えるのでしょうか? 

    未定係数法は一階の線形微分方程式にも使えるのでしょうか? 一階の線形微分方程式の解き方は dy/dt + p(t)y = g(t) のとき e^∫p(t)dt を両辺にかけて そのあとで両辺を積分してyについて解く と習いました。 そして、未定係数法は2階の線形微分方程式を解く方法の一つとして、 習いました。 ここで疑問に思ったのが、 この未定係数法は一階の線形微分方程式にも使えるのでしょうか? だとしたら下のような手順でよいのでしょうか? 同次式: dy/dt + p(t)y = 0 の一般解を求める (積分定数が残る) 非同次式: dy/dt + p(t)y = g(t) の特殊解を求める (積分定数はない) yの一般解 = 同次式の一般解 + 特殊解 よろしくお願いします。

  • 微分方程式

    y1(x),y2(x)が2階線形微分方程式 y''+p(x)*y'+q(x)*y=0の基本解ならば、 a^2≠1とするとき y1(x)+a*y2(x),a*y1(x)+y2(x) もこの微分方程式の基本解となることを証明したいのですが、どうすればいいのか分かりません どなたかお願いします。

  • 微分方程式についての質問です。

    微分方程式についての質問です。 問題となる方程式は (x+1)y" - (x+2)y' = 0 です。 よろしくお願いします。 また、定数係数でない2階微分方程式を、 公式を使わずに導出するコツなどがありましたら、 是非教えてください。

  • 微分方程式の問題ですが・・

    定数係数微分方程式 y''+ay'+by=0の二つの解u(t),v(t)に対してある定数Cが存在してu'v-uv'=Ce^-atガ成り立つこと証明せよ。と関数 u(t),v(t)のロンスキアンをW(u,v)とする。R上でW(u,v)≡0を満たす一次独立な関数 u(t),v(t)の例をあげよ。なんですがさっぱり・・・。どなたかお願いします。

  • 斉次線形微分方程式

    はじめまして。 斉次線形微分方程式の解と一般解はどうちがうのでしょうか?? 一般解とは、微分方程式の解で、その階数と同じ個数の任意定数を含むものをいうらしいのですが・・・ 初歩的ですがよろしくおねがいしますm(__)m

  • 線形微分方程式の定義

    線形微分方程式の定義というのは、以下のもので認識しているのですが、 これであっているのでしょうか? (検索しても、とくに「定義」として書かれているものは少なく、 自分の「定義」の認識が違っていると大変なので…。) n階の微分方程式が P0(x) d^ny/dx^n + P1(x) d~n-1y/dx^n-1 + … + Pn-1(x)dy/dx +Pn(x)y = Q(x) のかたちをしているとき、これを線形微分方程式という。

  • 変数係数2階線形微分方程式

    変数係数2階線形微分方程式の問題です。 x^2*y(x)''+2x*y(x)'-iαy(x)=0 i:複素数,α:定数 この微分方程式はどのようにして解けばよろしいでしょうか? できるだけ計算過程を詳しくお願いします。 解にはベッセル関数が用いられるみたいです。 自分でベッセルの微分方程式と同様にして解いていっても途中でつまずいてしまいます。 お手数ですがよろしくお願いしたします。

  • 非同次線形微分方程式の解

    非同次線形微分方程式の解は、 「同次線形微分方程式の一般解+特殊解」 だと思うのですが、このとき、 「【同次線形微分方程式の一般解】は、非同次線形微分方程式の解である。」と言えるのでしょうか?

  • 微分方程式

    問題を解いていて少し疑問に思ったので質問させてください。 u=u(t)を未知関数として A(du/dt) + B*u = E*sin(ωt) について、一般解を求め、その後初期条件u(0)=u0のもとで解け。 ただし、A,B,E,ωは正定数とする。 上記のような問題なんですけど、これは一階微分方程式ですよね? 一般解は、二階微分方程式では特性方程式によって求めた基本解と、未定係数法で求めた特殊解を重ね合わせて作るという印象があります。 このような一階微分方程式の場合はどのように解けばいいですか? 二階の時と同じように解いてよいならば、特性方程式の解から基本解を作る時など、二階微分方程式の時と同じようにやってよいものか疑問です。 特殊解も未定係数法もつかってよいのでしょうか。 詳しい方いましたら教えてください。

  • 線形微分方程式の一般解

    定係数の線形微分方程式の解は経験的にexpの累乗の形になる。 とあるのですが、どうしてそういえるのですか? 噛み砕いて説明していただくと嬉しいです。 よろしくお願いいたします。 例えば以下のような文です(累乗がかけずに見ずらいですが・・・) 次のd2X(x)/dx2+β2X(x)=0 という 経験的に定係数の線形微分方程式の解はX(x)=eαxである。

専門家に質問してみよう