• ベストアンサー

関数に対するシュミットの直交化

a=(1,0,1)のようなベクトル系のシュミットの直交化はできるんですが 関数に対するシュミットの直交化ってどのようにやるんですか? 基底[1,x,x^2]からシュミットの直交化を用いて正規直交基底を作りたいです。

質問者が選んだベストアンサー

  • ベストアンサー
  • Tacosan
  • ベストアンサー率23% (3656/15482)
回答No.2

や, 内積は (いくつか条件はあるけどとにかく) スカラーになってくれないと困ります. 普通は「ある区間における定積分」を使うかな. 積分区間は問題から決まるはず.

jon-td-deen
質問者

お礼

完全にわかりましたー。ありがとうございました。

その他の回答 (1)

  • Tacosan
  • ベストアンサー率23% (3656/15482)
回答No.1

ベクトル系だろうと関数系だろうと, 「内積」を定義してしまえば全く同じように処理できます. で, どのように「内積」を定義しますか?

jon-td-deen
質問者

お礼

そうか、その内積をどのように定義するかが鍵なんですね。 <f,g> := ∫f(x)g(x)dx とすればいいんですね。

関連するQ&A

  • グラムシュミットの直交化に関する質問です

    グラムシュミットの直交化をする過程で、2つめの正規直交基底e2を求める際に a2'=a2-<a2-e1>e1 と置きますが、<a2-e1>e1はどんなベクトルを意味しているのでしょうか?行列の内積はなに??その内積に(基底)e1をかけるのは何を意味すしているのか???わかりません。 またこの直交行列で実対象行列を対角化できるのですが、普通に固有値を求めて対角化できるのになぜこの様なことをしなければいけないのでしょうか?? さらに、実対象行列じゃない場合にグラムシュミットの直交化を使えば対角化はある場合を除いて可能なのでしょうか?? 一度にいっぱい質問して申し分けないんですが、教えてください!!

  • シュミットの正規直交化について

    シュミットの正規直交化をする過程で 0ベクトルが出てきました。 その後の計算法とこの0ベクトルが何を意味するのか教えてください。

  • 正規直交基底に関する問いです。お願いします。

    問 ?=1/3<1,2,2>を含むR³の正規直交基底を一組み構成せよ。  良く見る設定は、3次元の場合、ベクトルが3本与えられていて、そこからシュミットの直交化法を用いて、正規直交基底を作るタイプです。本問は、ベクトルが一つしか与えられてません。どのような方針で、解法はどのようになるのでしょうか?よろしくお願いします。

  • シュミットの直交化

    対称行列は、必ず直交行列により対角化できます。そして、与えられた対称行列の固有値が重解である場合は、シュミットの方法で直交化する必要があると習いました。 しかし、固有値に重解がある対称行列で、たとえばある重解の固有ベクトルが t^p(1 1 0)+t^q(0 1 0)のような形になったとき、(p,qは0以外の任意の係数)、ここでシュミットの方法を用いず、ただ正規化して並べただけでも、正解にたどりついてしまう場合があります。これは単なる偶然でしょうか? たとえば、 (1,0,0,1) (0,1,1,0) (0,1,1,0) (1,0,0,1) という行列では、固有値がλ=2,0(両方とも重解)で、λ=2の固有ベクトルはt^p(1 1 0 1)+t^q(0 1 1 0)で、λ=0の固有ベクトルはt^r(1 0 0 (-1))+t^s(0 1 (-1) 0)です。(p,q,r,sは0以外の任意の係数) これらを正規化して横に並べた行列は、シュミットの方法を用いた結果と同じになります。 これらのことから考えて、固有値に重解がある対称行列でも、シュミットの方法を用いなくて良いものと、用いなければならないものがあるのでしょうか?

  • 正規直交基底の存在性

    計量ベクトル空間の正規直交基底の存在性についてです. 証明の手順は以下のようにやろうと考えています. 計量ベクトル空間V,dimV=n ⇒線形独立な集合Aが存在する(1) ⇒Vの基底E:={ei}(i=1,2,...n)が存在する(2) (Aにいくつかベクトルを足すことで構成する) ⇒Vに正規直交系E':={ei'}}(i=1,2,...n)が存在する(3) (Eにシュミットの直交化法を施す) ⇒E'はVの基底である(4) ⇒E'はVの正規直交基底である(5) (1)⇒(2)⇒(3)は示せるのですが, (3)⇒(4)が示せません. どなたか,アドバイスなどよろしくお願いいたします.

  • シュミットの正規直交化

    列ベクトルで表記された基の直交化は計算できるのですが、次のような表記で出されると途端にできなくなってしまいます。 詳しい計算過程をご教授いただきたく思います。よろしくお願いします。 V=R[x]_n とする。f,g∈V に対して (f,g) = ∫_(-1 to 1) f(x)g(x) dx と定義すると、( , ) はVの内積である。 これに関し、次のR[x]_2 の基をシュミットの方法で正規直交化せよ。 (1){1,x,x^2} (2){1+x,x+x^2,1}

  • 正規直交基底

    (問題) 3つのベクトルa=(1,1,1,1) b=(1,-1,1,-1) c=(1,1,-1,-1)がある。(表記が違いますが、列ベクトルです) 1.a,b,cが互いに直交していることを示せ。 2.a,b,cの正規直交基底を求めよ。 3.a,bc,の全てに直交するベクトルを1つ求めよ。 というものなのですが。疑問点があるので答えて頂ければ幸いです。 1.の直交を示すことはそれぞれ内積a・b a・c b・cが0であることから示せます。(これは正しいと思います) 2.の正規直交基底なのですが、これは互いに直交しているため、それぞれの大きさを1になるように正規化すれば良く、複雑な計算は必要ないですよね? また、問題は四次元のベクトルですが、3つだけで正規直交基底と言えるのですか? R^4の正規直交基底と問題2が示す正規直交基底は別物ですか? また、3で全てに直交するベクトルを1つ求めよとありますが、このベクトルを正規化すれば、 それらを全て合わせてR^4の正規直交基底ということでよろしいのですか? ちなみに全てに直交するベクトルdは(1,-1,-1,1)となりました。 質問を煩雑に羅列してしまい申し訳ないですが解答よろしくおねがいします。

  • ベクトルの直交化について

    こんばんは。 線形代数の勉強をしていて疑問に思ったことがあるので質問させていただきます。 今Schmidtの直交化というものを勉強しております。直交化の計算はわかったのですが意味がいまひとつわかりません。単に正規直交基底を作るだけなら、例えば三次元の場合はどんなa1,a2,a3が与えられたとしてもすべて(1,0,0),(0,1,0),(0,0,1)を基底としてしまえばいいのではないのでしょうか。 それともこれは「a1を基底と定めた時、それに直交する残りの基底を求めること」なのでしょうか。まだ初心者ですのでわかりやすく教えていただけると幸いです。

  • 直交ベクトル

    4項列ベクトルa,bによって張られる次のようなベクトル空間Vを考える V = {v | v = αa+βb, α,β∈R} a,bはVの基底ベクトルである。 いま、Vの別の基底ベクトルx,yをxとyが直交するように取りたい。 x=aとしたとき、yはどのようになるか答えよ。 a= ( 2,1,-2,0 ) b= ( 1 ,-1 ,-1 ,1 ) ↑横に書いてありますがどちらも縦並び4行です。 上記の問題ですが解く方法がわかりません。 直交系なので正規直交系を使うのかなと考えてみましたが問題の種類が少し違うみたいなので。 どなたかご教授してくださると助かります。 宜しくお願いします。

  • 直交行列について

    正規直交基底を列ベクトルにして正方行列を作ると、直交行列になりますが、 この時、行ベクトルの組も正規直交基底になっていることはどう証明すればよいのでしょうか? 詳しい方教えてください。