• ベストアンサー
  • すぐに回答を!

極値を求めよ

次の問題がわからないのでお教えください。 1)xy+1/x+8/yの極値を求めよ。 この問題はまず、fx(x,y)=fy(x,y)=0の時の停留点を求めるのですが。その計算(中学生の連立方程式)がわかりません。あと、参考書に書いてあったx≠0の意味がわかりません。なぜ、xはゼロになったらだめなのですか。また、問題によってはxがゼロの問題もありました。そこら辺はどうなのでしょうか。 前者の質問は、 fx=y-1/x^2 ,fy=x-8/y^2 で、y=1/x^2 , x=8/y^2となってしまいます・・・

共感・応援の気持ちを伝えよう!

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.1

f(x,y)=xy +1/x +8/y とおきますと、 fx=y -1/x^2=0 fy=x -8/y^2=0 y=1/x^2 を2番目の式に代入すると、 x=8/(1/x^2)^2=8x^4 8x^4-x=0 x(8x^3-1)=0 x(2x-1)(4x^2+2x+1)=0 x=0,1/2 x=0で、f(x,y)は発散だから、x≠0、同じくy≠0 (x,y)=(1/2,4)のとき、極小値6

共感・感謝の気持ちを伝えよう!

その他の回答 (1)

  • 回答No.2
  • Meowth
  • ベストアンサー率35% (130/362)

xy+1/x+8/y に1/xがあるからx=0はまずいでしょ 、y=1/x^2 , x=8/y^2 x^2y=1 xy^2=8 割り算すれば y/x=8 y=8x 8x^3=1 で x=1/2 y=4

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • 極値を求める問題です

    次の極値を求める問題をお教えください。 ○xy(1-x-y)です。 まず、fx(x,y)=fy(x,y)=0の停留値を求める。 fx=y-2xy-y^2 ―(1) fy=x-x^2-2xy ―(2) (1)-(2)で、 y-y^2-(x-x^2)=0 y-y^2-x+x^2 ここから、どうやって停留値のxと、yを求めるのですか。

  • 偏微分の極値の問題について

    aを定数とするとき、f(x、y)=3axy-x^3-y^3 の極値をもとめよ という問題で fx(x、y)=3ay-3x^2    ・・・(1) fy(x、y)=3ax-3y^2    ・・・(2) は出しせたのですが 次に 極値をとる可能性のある点 (x、y)=(0 , 0 ) ( a , a ) の2点になるのがわかりません (1)と(2)を連立させるってことですよね? うまくできないので 教えて欲しいです;;

  • 極値の求め方

    関数のf(x,y)=x⁴+y⁴-2x³+4xy-2y²の極値を求めたいんですが、連立方程式 ∂f/∂x=4x³-6x²+4y=0 ∂f/∂y=4y³-4y+4x=0 を解きたいんですが、解を求められません。 どのように解けばいいでしょうか? よろしくお願いします。

  • 2変数関数の極値の問題について

    関数 f(x,y) = x^4 + y^4 - 2x^2 + 4xy - 2y^2 の極値を求めよという問題で, fx = 4x^3 - 4x + 4y = 0, fy = 4y^3 - 4y + 4x = 0 という関係から極値を得る候補点が(√2, -√2) , (-√2, √2) , (0, 0) が得られるようなのですが, まず前2つの候補点を求める方法が知りたいです. よろしくお願いします.

  • ラグランジュの乗数法での極値の求め方

    宜しくお願い致します。 [問]ラグランジュの乗数法をを使って、x^2+y^2=1の条件下でf(x,y)=xyの極値を調べよ。 [解] 『定理(ラグランジュの乗数)g(x,y)=0のもとに、f(x,y)の極値を考える。この条件付極値を与える点(a,b)がg(x,y)=0の特異点でなければ(a,b)は連立方程式 g(x,y)=0 ∂/∂x{f(x,y)+λg(x,y)}=0 ∂/∂y{f(x,y)+λg(x,y)}=0 の解の中から得られる。』 そして、 『f(x,y)の特異点とは 「fx∈Rでない または fy∈Rでない」か「fx=fy=0」なる点』 なのでこれを利用するとまず連立方程式は (∂/∂x{f(x,y)+λg(x,y)}=)y+2λx=0…(1) (∂/∂y{f(x,y)+λg(x,y)}=)x+2λy=0…(2) x^2+y^2=1…(3) となり、(1)-(2)から (x-y)(1-2λ)=0 λ=1/2の時はxとyの値が定まらないのでλ≠1/2とすると x=yで(3)よりx=y=±1/√2 (複合同順) しかし、解答には (1/√2,1/√2) (1/√2,-1/√2) (-1/√2,1/√2) (-1/√2,-1/√2) の4つになっています。 何処らへんから間違っているのでしょうか???

  • 極値、最大最小問題

    f(x,y)=xy(x+y-1)について以下の問いに答えよ。 (1)x,yがx^2+y^2<1を満たすとき、f(x,y)の極値を求めよ。 (2)x,yがx^2+y^2≦1を満たすとき、f(x,y)の最大値、最小値を求めよ。 この問題でf(x,y)=xy(x+y-1)を偏微分してfx(x,y)、fy(x,y)、fxx(x,y)、fyy(x,y)、fxy(x,y)を求めて、(1)の極値を求めるために(x,y)=(a,b)で極値を取ると仮定してfx(a,b)=fy(a,b)=0を解いて極値の候補出そうとしたんですが、よくわかりません。どうしたらいいですか?もし解ける人がいましたら、解答orアドバイスお願いします。 解けなくて困っているんで、解ける人いましたらお願いします。

  • 解き方がわかりません助けてください

    2変数関数f(x,y)=x^3-3x+3xy^2について。 (1)連立方程式fx(x,y)=fy(x,y)=0を解け。 (2)不等式fxx(x,y)fyy(x,y)-{fxy(x,y)}^2>0の表す領域を図示せよ。 (3)f(x,y)の極値を求めよ。 です。 まず(1)のfx(x,y)=fy(x,y)=0の段階からわかりませんfx(x,y)がどういう意味なのかが分かりません。 (2)は上と同じ要素でわからない&計算方法がわかりません。 (3)は(2)が解けないと解けないですよね?こちらも求め方を教えてください。 基本的に何をどうすれば解へとたどり着けるのかが分かっていないので、できれば詳しく解法を教えてください。

  • 関数の極値を求める問題が分かりません

    「f(x,y)=xy(2-x-y)の極値を求めなさい。」という問題の過程で、停留点が(0,0),(0,2),(2,0),(2/3,2/3)と求まるのですが、(0,0),(2,0),(0,2)が極値でないことを説明できません。 どなたか説明できる方がいらっしゃいましたら教えて下さい。 よろしくお願いします。

  • 2変数関数の極値

    2変数関数f(x,y)=x^3-(x^2-y^2)/2+xy^2を考える、という問題です。 問題の(3)でf(x,y)の極値を求めよ、と問われたのですが、 D(x,y)=fxy(x,y)^2ーfxx(x,y)fyy(x,y) とおき、z=f(x,y)の停留点(a,b)をもとめて、極値の判定を行ったところ、D(a,b)>0となり f(a,b)は極値ではないとなってしまいました。 ちなみに、停留点は(0,0)になりました。 これは正解なのでしょうか?それとも計算間違いですか? 間違っていたら過程を教えていただけないでしょうか。お願いします。

  • 質問 大学 数学 条件付きの極値

    0≦x≦3、-3≦y≦0のとき、関数f(x,y)=(x + y^2 +2y)e^2x の最大値、最小値を求めよ。 という問題の解説をお願いします。 最大値、最小値なので、 まずfx、fyを求めて極値になる停留点の候補を探すのは大丈夫なのですが、 境界線上の点の求め方があいまいなのでお願いします。