• ベストアンサー
  • すぐに回答を!

全射と単射の問題

以下の問題が分からないのですが、どのように解いたらいいでしょうか? XとYが関数で与えられている場合は解けるのですが、このような場合どのように解けばいいのか分かりません。 どなたか教えていただけると嬉しいです _ _ > 集合 X={1, 2, 3, 4}, Y = {1, 2, 3}に対して、次の問いに答えよ。 > (1) XからYへの全射を全て求めよ。 > (2) XからYへの単射は存在しないことを示せ。

共感・応援の気持ちを伝えよう!

  • 回答数3
  • 閲覧数322
  • ありがとう数2

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.3
noname#43759
noname#43759

NO.2で答えた者です。 ANO.2への補足に対して答えます。 その解答方法で大丈夫です。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

ありがとうございます。 すっきりしました!

その他の回答 (2)

  • 回答No.2
noname#43759
noname#43759

全射、単射の定義がわかれば、すぐにわかります。 f:X→Yとする(X,Yは集合) Xの元をYの元に対応させるのです。 全射とはf(X)=Yが成り立つこと。 単射とは a,b∈Xとすると、 a≠b ならば f(a)≠f(b) が成り立つということ。

共感・感謝の気持ちを伝えよう!

質問者からの補足

回答して下さっている方ありがとうございます。 全射と単射について復習してきました。 (1)の答えは、 1を1、2を2、3を3、4を1に写す写像 などとして全射となる写像を全通り書き出していけばいいのでしょうか? (2)は、 YよりXの要素が多いので、XからYの写像はYの一つの要素に対してXの要素を複数個対応させる。よって単射は存在しない という回答で良いのでしょうか? アドバイスいただけると幸いです _ _

  • 回答No.1
  • koko_u_
  • ベストアンサー率18% (459/2509)

>XとYが関数で与えられている場合は解けるのですが すごく具体的に与えられとるのですが。 まずは「写像」「全射」「単射」の定義から復習ですね。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

ありがとうございます。 写像と集合の関係について誤解していました。

関連するQ&A

  • 大学数学 全射と単射

    次の問いが正しければ証明し、間違っていれば凡例をあげよ。 (1)fが単射ならばg○fは単射 (2)gが全射ならばg○fは全射 (3)fが単射、gが全射ならばg○fは全単射 という問題についてなのですが、 例えば(1)はgが全射か単射かによって場合分けをして考えるのでしょうか。 g,fともに全射ならばg○fは全射 g,fともに単射ならばg○fは単射 ということは証明できたのですが、g,fの片方が全射でもう片方が単射の場合の証明方法がわかりません。 また「凡例をあげる」というのは、どのように書けば良いのでしょうか?具体的な関数(y=x^2等)を書けということなのですか? ヒントやアドバイスでも良いので、どなたか回答をお願いいたします。

  • 写像に関する問題で単射、全射、全単射を選ぶ問題についての質問です

    大学の問題で、 関数f,g:N→Nを以下のように定義する。 f(n) = 3n, g(n) = [n/3]+1     ※[ ]は床関数を表す fとgの合成gfが満たす性質を選べ。 (A)単射でも全射でもない(B)単射だが全射ではない (C)全射だが単射ではない(D)全単射である という問題なのですが、gfが1となる元が存在しないので(B)の単射だが全射ではないと思うのですが、回答を見たら(D)の全単射でした。なぜ全射になるのか分らないのですが、教えていただけないでしょうか。 よろしくお願いします。

  • 単射 全射 全単射 について教えてください

    タイトルの通り、単射 全射 全単射についていまいち納得できないので教えてください。 今、手元に問題が5つあるのですが 自然数、整数、実数全体の集合をそれぞれN,Z,Rとする。 (1)f:Z→N f(x)=x2(二乗) (2)f:R→R f(x)=2x(x乗) (3)f:R→R f(x)=sinx (4)f:Z→R f(x)=x3(三乗) (5)f:R→R f(x)=2x+1 例えば、(1)であれば  Zが1のとき、Nは1、Zが2のとき、Nは4という風にZが決定すればNはただひとつ必ず決まるから単射。 でも、Zが2のときは、Zは1とも-1ともいえるので全射ではない、ということなのでしょうか。 全単射、というのはそうするとどういった状態を言うのでしょうか・・・ それぞれの問題も全くちんぷんかんぷんです。 どうか教えてください。

  • 単射と全射について

    写像、単射、全射についての質問です。 これらのイメージがいまいちつかめません。 定義とか証明とかいったことが知りたいのでなく、 具体的な問題を解くための理解を得たいと思っています。 具体的な問題を挙げてみると、いまA={a,b,c,}とすると AからAへの写像の数は27になるそうですが、 これはaについて3通りあって、bについても3通りあって、cについても3通りあるから 3×3×3=27という考え方であっているでしょうか? 次に、AからAへの単射の数、全射の数はそれぞれ6通りあるそうですが、 これはどういう考え方なのでしょうか?おそらく3!という計算だと思うのですが、 なぜそのような計算をするかがわかりません。 単射については、行き先の値がダブってはいけないということなのでしょうか? 拙い日本語で申し訳ないのですが、 補足等必要ならいたしますのでどなたか詳しい方は教えてください。よろしくお願いします。

  • 写像の単射全射のところの関係式に関する証明について

    写像の単射全射のところの証明がわからないので、ご教授ください。 集合AからBへの写像をfとし、a∈A,P⊂A,b∈B,Q⊂Bとする。 1.fが単射のとき、a∈P ⇒ f(a)∈f(P)の逆が成り立つことの証明 2.fが単射のとき、P1⊂P2 ⇒ f(P1)⊂f(P2)の逆が成り立つことの証明 3.fが単射のとき、f(A-P) ⊃ f(A) - f(P) の逆が成り立つことの証明 4.fが単射のとき、f^(-1)(f(P)) = Pの証明 5.fが全射のとき、∃a'∈f^(-1)(Q), b=f(a') ⇒ b∈Qの逆が成り立つことの証明 6.fが全射のとき、Q1⊂Q2 ⇒ f^(-1)(Q1)⊂f^(-1)(Q2)の逆が成り立つことの証明 7.fが全射のとき、f(f^(-1)(Q)) = Qの証明 以上の7問です。 何個かだけでも構いませんので、回答して頂ければ嬉しいです。 また、はじめての質問ですので、ご迷惑をおかけするかもしれませんが、よろしくお願いいたします。

  • 写像と単射、全射に関する問題について質問です

    次の問題の解法がわかりません…誰か教えてください 写像f:X→Yに対してF:P(X)→P(Y)を F(B):=f^-1(B)と定義する。 このとき、fが全射⇔Fが単射 を示せ。

  • 商空間における全射について

    商空間の定義で出てくる、『全射』がよくわかりません。 内田伏一著、集合と位相の96ページに、定義として、 (X,O)を位相空間とし、f:X→Yを集合XからYへの全射とする。集合Yの部分集合族O(f)を O(f)={H∈B(Y)|f^(-1)(H)∈O} によって定義する。 とあるのですが、ここでf^(-1)の逆写像の存在を認めていますよね?しかし、fは全単射ではなく、全射としか仮定がついていないのに、この逆写像は存在することにしてしまっていいのでしょうか?? すごく初歩的なことかもしれませんが、アドバイスお願いします。

  • 基本的な事ですが…(単射、全射、onto…)

    単射、全射、全単射、onto、1対1。 これらの意味を教えてください。 きっと同じ事を言っているのもあるとは思いますが。

  • 単射と全射

    Bをn行m列複素行列とし、Bを表現行列とするf;m元複素数→n次元複素数への線形写像とする。また、転置Bはm行n列複素行列でありg;n次元複素数→m次元複素数への線形写像であるとする。 このときfが単射ならば、gは全射であることを示せ。

  • 線形代数 全射 単射 全単射 

    行列の線形写像について 全射は行基本変形をすれば単位行列になり判別するみたいなのですが、ほかの単射や全単射は どのような判別の仕方をすればいいのでしょうか。