• ベストアンサー
  • 暇なときにでも

AまたはBが空集合⇔A×B=Φ ???

実数において、 aまたはbが0 ⇔ ab=0 aかつbが0 ⇔ a^2+b^2=0 だと思います。同様のことを集合において考えたいのですが、 AまたはBが空集合 ⇔ AとBの直積 A×B=Φ でよいのでしょうか?また、 AかつBが空集合 ⇔ AとBの和集合 A∪B=Φ だと思いますが、実数の場合と比べて異なっているので、なんかすっきりしません。 統一的に解釈できないでしょうか?

共感・応援の気持ちを伝えよう!

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.1

当方、専門家ではありませんが・・・ AまたはBが空集合 ⇔ AとBの直積 A×B=Φ これはあっていますね。 後半ですが、負の要素数を持つ集合がないからではないでしょうか。 実数の方に絶対値をつければ統一的に解釈できそうかも。 a^2+b^2=0→|a|+|b|=0 ab=0→|a||b|=0

共感・感謝の気持ちを伝えよう!

質問者からのお礼

なるほどですね。 ありがとうございます。

関連するQ&A

  • 「直積集合の全集合」とは?

    別の方の質問 http://oshiete1.goo.ne.jp/qa4877672.html を見ていて気になった点についてです。 「集合族の空集合と全集合」とは何でしょうか? 通常、「空集合」や「全集合」は、何らかの集合の ベキ集合族に対して定義される概念かと思います。 一般の集合族に対する「全集合」とは、どのように 定義されるのでしょう? 「集合族Φの全集合」と言ったら、Φ自身のことでしょうか、 それとも、Φの最大元のことでしょうか? ご存知の方、解説よろしくお願いします。 先の http://oshiete1.goo.ne.jp/qa4877672.html の例で言えば、 ΨとΩの集合族としての直積は、質問氏の書いている Ψ×Ω = { (A,B) ; A∈Ψ, B∈Ω } ですが、これは、 ベキ集合族ではないし、σ集合族でもありません。 Y と Z の空間としての直積に付随するσ集合族 という意味で 言っているのだとすれば、「直積」は、このΨ×Ωではなく、 Ψ×Ωの任意個の元の和集合全体が成す集合族 になるハズです。 その際、「全集合」が Y×Z であることは違いありませんが… また、A×0 = 0×B = 0 と考えるなら、この式の「×」を 0 と B の集合としての直積と解釈したことになります。 Ψ×Ω = { A×B ; A∈Ψ, B∈Ω } と表記するのならば、 右辺内の A×B は、A と B の対 (A,B) という意図で 標準的でない書き方をしてしまったものと解釈すべきで、 A と B の集合としての直積ではありえません。 その場合、0×B は、Ψ×Ωの元で Y成分が 0、Z成分が B の ものであって、空集合ではありません。

  • 直積集合の空集合と全集合

    σ集合体Ψ、Ωを使って、(*)のように直積をとった集合族の空集合と 全集合は何になるんでしょうか?ちなみに、Ψは集合Y、Ωは集合Zを もとに作られているとします。 {A×B; A∈Ψ, B∈Ω} (*) 空集合を0で表記すると、(*)の空集合は0×0、全集合はY×Zと思った のですが、正しいでしょうか。また、0×BやA×0はどう扱うのでしょうか。 Y×BとA×Zは全集合ではないというのはなんとなくわかるのですが…。 よろしくお願いします。

  • 集合(数A)

    空集合について質問したいしたいのですが・・・。 空集合はなぜ部分集合にもなるのでしょうか? A={1.2.3} B={4.5}のときAかつB=空集合 というのは理解できたのですが、 どんな集合Aについても、空集合はAの部分集合と考える(←教科書より)が理解できません。 そういうものだと覚えるものなのでしょうか?

  • 空集合∩A=空集合

    空集合∩A=空集合 A∩B⊂A,A∩B⊂B A⊂B⇔A∩B=A これらを証明せよ。って問題なんですがどなたかわかりませんか? これって図を書いてここですよって感じではダメなんですか?それならすぐできるんですが、いつか数学で図は証明にならないとか聞いたことがあって・・・ どなたかお願いします。

  • 空集合における=

    赤攝也著「集合論入門」には、集合A,Bに対してA=Bであるとは、どんなxについても 「xがAの元→xがBの元」かつ「xがAの元←xがBの元」が成り立つことだ、見たいに書いてますけど、 たとえばAが空集合の場合どうなるのでしょう。 この場合「xがAの元→xがBの元」は成り立っていると言えるのでしょうか? それとも、空集合の時は特別に=の定義をやり直すべきなのでしょうか? お願いします。

  • 直積集合の作り方について

    こんにちは。 物理学を学んでいる学生ですが数学を独学で勉強中で直積集合の構成について質問があります。 目的は直積集合で座標軸xを構成することとします。 このとき、 ある添数集合N(自然数)を定義し、その元をλとします。(λ=1,2,3,・・・) この時、Nによって添数づけられた集合族 (A)λ∈N を定義しておいて、 この集合族Aを(-λ, λ)としておく。 全ての添数λ(∈N)についての集合族Aの和集合で直積集合を構成することにする。 このとき、Aの和集合で構成される直積集合は(-∞,∞)の集合となりますか? この考え方で座標軸x軸を構成できると思いました。 この考え方は正しいですか? また、間違っているならどこが間違っているか教えてください。 お願いします

  • 空集合の扱い方について

    とっても読みにくい文章になってしまいましたが、回答お願いします。記述の仕方のささいな誤りは見逃してください… 「P(x)を満たす任意のx∈R(実数)がQ(x)を満たす。」という命題(命題1)について、 P(x)を満たすxが存在しないとき(つまり、{x∈R|P(x)}=Φのとき)、この命題は真だと説明されました。 理由としては、 「この命題が偽ならば、P(x)を満たすがQ(x)を満たさないxが反例として存在するはずだが、P(x)を満たすようなxはそもそも存在しない。よって真である。」 ということらしいのです。 そこで、Q(x)の否定をR(x)として、「P(x)を満たす任意のxがR(x)を満たす。」(命題2)の真を同様に証明することもできるのでしょうか? もしできるのなら続けて質問があります。 P(x)を満たすxの集合をS、Q(x)を満たすxの集合をTとすると、命題1が成り立つとき、SはTに含まれています。Sが空集合の場合を考えると、空集合は任意の集合の部分集合である、といえます。(これは授業でやりました) しかし命題2が成り立つならば、SはTに含まれていません。空集合はどの集合にも含まれない、ということになりますよね。 空集合は任意の集合の部分集合であると同時に、どの集合にも含まれないという理解で良いのでしょうか? また、Q(x)=(x≦u)とすると、「SはTの部分集合である⇔uはSの上界である」となり、命題1をこれまでと同様に命題1をあてはめると、任意の実数uは空集合Φの上界である。となり、命題2をあてはめると任意の実数uは空集合Φの下界である。ということになりますが、これも上と同様の、任意の実数uは空集合Φの上界であり、下界である、というふうに理解したのでよいですか?

  • 直積集合の元は必ず集合となる?

    度々すいません。また数学基礎論での質問です。 a,bを集合として<a,b>:={{a},{a,b}}と定義し、順序対と呼ぶ。 そして、 A×B:={<a,b>;(a∈A)∧(b∈B)}と定義し、A×Bを直積集合と呼ぶ。 と記載されているのですが、 これだとAやBは集合系(集合が元であるような集合)でa,bは集合ですよね。 (A×Bの元<a,b>は2^(2^(A∪B))の元?) でも 通常、数学基礎論以外の教科書(微分積分や線形代数)ではA×Bの元は集合でない場合で定義されてますよね。 A×B:={<a,b>;(a∈A)∧(b∈B)}が直積集合の定義で微分積分や線形代数での直積集合の定義も含んでいるのなら、 元は集合にも成りうるのでしょうか? 具体的には a,bを集合として<a,b>:={{a},{a,b}}と定義し、A×B:={<a,b>;(a∈A)∧(b∈B)}と定義するのなら実数体の直積集合R×Rの元(例えば(√2,1/2))は集合と言ってもいいのでしょうか?

  • A∪B∪C(否定)が空集合

    A∪B∪C(否定)が空集合であるとは実際にどういう状態なのでしょうか? この式の上に否定マークがあるのですが、書けませんでした。 下記の解説サイトには、A、B、Cの集合が書かれています。 http://www.ap-siken.com/kakomon/27_aki/q2.html

  • 直積集合について質問です

    直積集合について質問です。 直積集合を定義することによってどのような利点が生まれるのですか? また集合Aと集合Bの直積集合において、集合Aの部分集合fを要素と考えて集合Bの要素と部分集合fを組にすることは可能ですか?