• 締切済み
  • すぐに回答を!

微分方程式の解法の問題

テスト勉強中です 問題の解答がないのであってるかどうかわかりません おねがいします 1.質量mの質点を、原点から角度θ、速さVで投げ上げた。重力加速度をgとして、運動方程式を立て、与えられた初期条件のもとで解け 2.速度に比例した抵抗-mrvを受ける質量mの質点が、水平面を運動する。その従う運動方程式を立て、それが初速度Vで原点から投げられたという初期条件のもとで解け 3.質量mの物体が、壁に固定されたばねに速度Vで衝突し、逆向きに同じ速度で跳ね返されるときの運動方程式をたてて解け。ばねから受ける力はF=-kxで与えられる 4.原点から(-k1x,-k2y)の力を受けて水平面内を運動する質量mの質点の運動方程式を立てて解け。またそのその運動の軌跡はどうなるか求めよ

共感・応援の気持ちを伝えよう!

  • 回答数1
  • 閲覧数63
  • ありがとう数0

みんなの回答

  • 回答No.1

ご自分の解答を書いてください。 また、カテゴリーが違うのでは?

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • 力学

    1.質量mの質点を、原点から角度θ、速さVで投げ上げた。重力加速度をgとして、運動方程式を立て、与えられた初期条件のもとで解け 2.速度に比例した抵抗-mrvを受ける質量mの質点が、水平面を運動する。その従う運動方程式を立て、それが初速度Vで原点から投げられたという初期条件のもとで解け 3.質量mの物体が、壁に固定されたばねに速度Vで衝突し、逆向きに同じ速度で跳ね返されるときの運動方程式をたてて解け。ばねから受ける力はF=-kxで与えられる 4.原点から(-k1x,-k2y)の力を受けて水平面内を運動する質量mの質点の運動方程式を立てて解け。またそのその運動の軌跡はどうなるか求めよ 自分の解答 1.問題の意味がわかりません。初期条件がなにか   mg=Vsinθ? 2. 3.-mV+F=mV   F=-kx   -kx=2mV    4.

  • 物理のフックの法則の問題が分かりません(><)

    全部じゃなく分かるところだけでも助かりますので、教えてください!お願いします! 問1、フックの法則においては、原点からxの位置にある質量mの物体は-kx(k(>0)はばね定数)の力を受ける。t=0において、x=aにある物体を静かに離した。このとき、 (1)運動方程式と初期条件(t=0のときの位置xと速度V)を示せ。 (2)この運動方程式を解いて、物体の位置xの時間t依存性を求めよ。 問2、フックの法則に従うばねの一端を天井に固定し、他端に質量mのおもりをとりつけた系を考える。ばねの長さが自然長になるようにばねを支えた状態から、おもりを静かに放した(位置の原点をばねの自然長でのおもりの位置とせよ)。このとき、 (1)運動方程式と初期条件(t=0のときの位置xと速度V)を示せ。 (2)この運動方程式を解いて、物体の位置xの時間t依存性を求めよ。 問3、全問(2)の質量mのおもりをとりつけたばねを、ゆっくりと伸ばして平衡の位置(すなわち、おもりへの地球の重力とフックの法則による力がつり合った位置)までもってきた。ばねの自然長の位置を原点として、この平衡の位置x1を求めよ。

  • 物理学の問題です

    (問)高さhの屋上から質量mの質点を水平方向に初速V0で投げた (1)地上に原点をとり水平方向にx軸、鉛直上向きをy軸として、質点の運動方程式と初期条件を書け。 (2)運動方程式を解いて、初期条件を満たす解を求めよ。 (3)落下点を求めよ。 (4)落下点における速度Vのx成分Vx、y成分Vyを求めよ。 と言う問題です これを自力で解いてみたところ (1)の運動方程式は V0+gt  (3)の落下点は V0√(2h/g) (4)のVx=V0,Vy=gt とそれぞれなったのですが、この解答は合っていますか? また、(1)(2)の初期条件を求める問題が分かりません。 どなたか教えていただけないでしょうか?お願いします。

  • 2次元平面におけるばねの運動に関する問題

    x-y平面の原点にばね定数 k のばねがつながれている。ばねの自然長は L で、ばねのもう一方の端には質量 m の質点がつながれている。 1.質点の位置を(x,y)としたとき、ばねが質点に及ぼす力 F のx成分とy成分を求めよ。 2.質点に対するx,y方向の運動方程式をそれぞれ記述せよ。 3.質点の運動方程式を極座標形式に書き換えよ。 4. 3.の運動方程式を解け。 という問題なのですが、困ったことに解答がありません。なので1.がどうしてもxとyであらわす方法が分からないので先に進めなくて困っています。わかる方がいましたらよろしくお願いします。

  • バネと微分方程式(基本?)

    大学1年の者です。 物理演習で、初めて微分方程式を扱っているのですが、問題の途中でよく分からないところがありました。 問題は以下のようなものです。 自然長l、ばね定数kの二本のバネと質量mのおもりを1個用意して、 下から、地面・ばね1・おもり・ばね2・手の順につなげた装置を作る。 バネ1が自然長になるときを初期状態とし、その状態を基準に おもりの位置x、手の位置yを定める。(上向き正) 一定の速度vで引き上げる(y=vt)とき、 おもりの運動方程式をたててそれを解き、x(t)を求めよ。 これを、次のように考えました。 運動方程式は mx"=k(y-2x) だから、(x"はxの二階微分) y=vtを代入して整理して、 x"+(2k/m)x=(kv/m)t (1式) このような形になったら、まず右辺が0のとき(同次式?)のxを求めるといいらしいので そうすると、A,Bを任意の定数として x=AsinBt (t=0のときx=0だからsinにした) また、右辺が0でないとき(非同次、特殊解??) x=(v/2)t で1式が成り立つので、 「同次式での一般解と特殊解の和が解になる」らしいので x=AsinBt+(v/2)t とおける。 ここまでは出来たのですが、定数A・Bが求められません。 ただバネを引くだけなので、A=0になるのでは、とは思うのですが… (A≠0なら、おもりは上下に揺れながら上る?) 初期条件は任意のA・Bで成り立つし… もしここまでの過程が合っていたら、定数の出し方のヒントをお願いします。 間違いがありましたら、教えてください。 分かりにくい長文ですみませんが、よろしくお願いします。

  • 大学物理の問題が助けてください><

    滑らかな水平面上で、原点0から初速度V0 で質量mの質点が投げだされた。 質点には速度に比例する空気貞子(比例定数 K>0)が動く。投げ出され運動する方向をX軸として、以下の問を答えよ。 1 t秒後の速度(x方向)を v(t)として 、運動方程式を作れ。 2 運動方程式を解いてv(t) を求める。 3 t秒間 の移動距離 (t秒後の位置)x(t) を求める。 4 質点が静止するまでの移動距離を求める。 詳しくの答えるが欲しいです。

  • 微分方程式の問題です

    関数y=y(x)が微分方程式 y’’=y^3+y を満たすとき、初期条件のもとで解くとどうなりますか? (初期条件y(0)=1, y’(0)=√2)

  • 物理(衝突) 教えてください

    ばね(自然長l、ばね定数k)でつながれた質量m1の質点Bと質量m2の質点Cがなめらかで水平な床の上に静止している。床上を速度v0で滑ってきた質量m0の質点Aが質点Bに衝突(弾性衝突)した。 (1)質点B,Cの重心の座標Xとばねの伸びYは? (2)XとYを満たす方程式は? (3)初期条件はt=0のときx1=0、x2=およびx1''=v1,x2''=0 X(t),Y(t)は? (4)質点B、Cを質量m1+m2の1つの物体とみなしたとき、質点Aとこの物体との跳ね返り係数eは?この値は1より小さくなる。 質点Aが持っていた運動エネルギーの一部が質点B、Cからなる質点系の(  )の運動のエネルギーに使われるからである。(  )に当てはまる言葉は? 質点B、Cについての運動方程式は、 mx1''=k(x2-x1-l) mx2''=-k(x2-x1-l)と求めました。 (3)はX=(x1+x2)/2,Y=(x1+x2-l)/2と考えましたが、間違っている場合ご指摘お願します。

  • 単振動の問題です。よろしくお願いします。

    教科書の問題を解いていたのですが、解答も載っていなくてわからなかったので教えてもらえないでしょうか。 自然の長さがdで質量を無視できるばねがある。ばねの上端を天井に固定し、質量mの重りを吊るしたら、長さaだけ伸びて静止した。次に、bだけ伸ばして静かに離したら重りは振動を始めた。鉛直方向を始めに重りが静止していた位置を原点OとしたX軸(下向きを正)、重力加速度の大きさはgとし、ばね定数kとした場合以下の問いに答えよ。 (1)重りが静止しているときの力のつり合い式はいくらか。また、ばねの伸びaはいくらか。 (2)時刻tでの重りの位置をX(t)として、重りの運動方程式はいくらか。 (3)X(t)=Asin(ωt+φ)がこの運動方程式の解であること証明せよ。(ただし、ω=√k/mとする) (4)この運動の初期条件は? (5)(4)の初期条件より、Aとφを求めよ。

  • 放物運動の問題です。

    今、問題集を解いているのでが、答えがかみ合わなくて困っています。お願いします。 男の子が小石投げました。小石は、男の子の手から投げられたので高さはHとします。質点大きさはVとし、水平面に対する角度θの初速度で投げました。重力加速度はgです。原点OおよびX軸、Y軸をとるときどうなるか、以下の途に答えよ。 (1)XとY方向の運動方程式を求めよ。 (2)この運動の初期条件は? (3)時刻tでの質点の位置は? (4)質点が最高点に達する時刻とその最高点は? (5)質点が地上に落下する時刻とその位置は?