• ベストアンサー

交流の実効値の求め方

お世話になります。 標記については、よく電流(電圧)の2乗の平均の平方根という説明がなされます。 正確には、ある交流の大きさをその交流と同じエネルギーを直流の値で表したものということになります。 この場合、計算にて求める場合は 直流電流Iを抵抗RにT秒間流したときの電気エネルギーは、ジュールの法則から、 R*I^2*T となります。 また、交流電流iを抵抗RにT秒間流したときの電気エネルギーも同様に    R*i^2*T となりますが、このiは時間とともに変化することから T秒間の平均をとる必要があります。 この際、R*i^2*T の値は時間の積分により求める事になります。 ここで、引っかかっているのは時間そのものが電流にかけられている事から、0~T秒まで∫i^2 ・・・つまり1/T*∫Imsinωt dt の積分を行うのではなく、 0~T秒まで 1/T*∫t*Imsinωt dt の積分 ・・・つまり時間も含めた上での積分を行う必要があるのではないかと悩んでいます。 しかし、実際は時間を含めず電流の2乗だけの積分を行い、時間Tをそのまま掛け算するだけで求める事ができるのですが、なぜ時間は積分に含める必要はないのでしょうか。非常に悩んでいます。 そのあたりを教えていいただけませんでしょうか。

質問者が選んだベストアンサー

  • ベストアンサー
noname#101087
noname#101087
回答No.3

R*I^2*T は直流I の積算電力ですね。 交流の積算電力は、単純にT 倍とはいかず、t : 0~T まで ∫R*(Imsinωt)^2 dt として求めます。 「R*i^2*T の値は時間の積分により求める事になります」とおっしゃっているとおりです。(i=Imsinωt) でも、1/T*∫t*Imsinωt dt とは違います。

mounanndem
質問者

お礼

ありがとうございます。 電流が時間の関数であるため、時間で積分することから、同様に時間そのものも積分する必要があるのではないかと考えてしまいます。

その他の回答 (4)

回答No.5

質問に質問を返して恐縮ですが、 > なぜ時間は積分に含める必要はないのでしょうか。 時間を含めると時間を時間で積分することになってしまいますが、 そうすることに意味があると考えておられる(?)理由は何なのでしょうか? なお、直流のR*I^2*Tについて、 > 最後の時間のTはそのまま掛ければ良いと言うことですね となるのは結果としてそうなるだけであって、 ∫RI^2dt の定積分結果として上式が得られるのだということをお間違えなく。 質問者様の疑問を適用すると直流についても∫tRI^2dt とする必要があるかと思います。

回答No.4

>電流が時間の関数であるため、時間で積分することから、同様に時間そのものも積分する必要があるのではないかと考えてしまいます。  少し頭の整理が必要です。  (エネルギーを出すために)時間を(で)積分してOKです。  ただし、積分する電流はi^2です。(2乗で計算しないと0になります。)  でも結局、電流を言っていますから、電流は単位時間当たりに流れる電荷ですから、平均電流を出す時に結局積分期間Tで割らなくてはいけません。  そのため、交流の実行電流を計算するときは、1サイクル期間で電流i^2を積分して、1サイクル期間で割り(平均を取ること)、そしてルートを取って(2乗をもどす)、実行電流を出します。

  • foobar
  • ベストアンサー率44% (1423/3185)
回答No.2

iが交流電流の瞬時値をあらわしているなら、 「交流電流iを抵抗RにT秒間流したときの電気エネルギーも同様にR*i^2*T」とはなりません。(T秒間のエネルギーがRI^2Tになるのは、IがT秒間の間一定の場合(Iが直流電流、もしくは、振幅一定の交流電流の実効値)だけです) ∫Imsun(wt)dt は時間に関して積分しているので、積分自体に時間が含まれています。(時間dtがかかっている)

mounanndem
質問者

お礼

ありがとうございました。 最後の時間のTはそのまま掛ければ良いと言うことですね。 電流を時間で積分することから、同様に時間についても積分しないいけないのではないかと考えてしまいます。 最後の時間については、時間の関数ではなく、一定の値であるため そのまま合計時間のTを掛けるだけでよいということでしょうか。

  • sanori
  • ベストアンサー率48% (5664/11798)
回答No.1

t*Imsinωt は、時間が経つほど振幅が大きくなることを意味することになってしまいます。 それは一体何を表しているのでしょうか? 現実の交流は、時間が経ってもコンスタントです。 電流の平均値を取るのですから、Imsinωt dt で良いのです。

mounanndem
質問者

お礼

自分も、引っかかっているところがうまく整理できていないかと思います。 電流を時間で積分するということと、エネルギーの計算にでてくる時間をごっちゃにしているのでしょうか。 時間で積分しているのに、そのまま時間Tを書けることがなぜできるのか不思議になっているのかと思います。 「t*Imsinωt は、時間が経つほど振幅が大きくなることを意味することになってしまいます。」は、時間とともに電流の大きさが次第に大きくなっていくことを表しているということでしょうか。 これが何を表しているというものではなく、 R*i^2*T  の時間積分を考えると、このようにすべきではないかというだけです。

関連するQ&A

専門家に質問してみよう