• 締切済み

f(x)=0^x の定義域

関数f(x)=0^x (ゼロのx乗) の定義域はどこまでなら広げられるのでしょう. 妥当な範囲,また病理的であっても一応定義可能な範囲について,理由とともにお教えいただければ幸いです. ちなみに, 予想は以下の通りです. xが正の実数...f(x)=0でよさそう. xが負の実数...f(x)=1/0^(-|x|)と思うと分母が0でまずそう. x=0...「aが定数のとき, a^x:=1*(a^x)」 という要請(解釈)が可能ならば,f(0)=0^0=1*(0^0)=1 (1に0を1回も掛けないならば1)と定めて困らない(のでは)? xが虚数...x=a+bi(a,b:実数;b≠0)とすると0^aは上のように定まったとしても,0^(bi)=0?1? それとも...

みんなの回答

  • Mell-Lily
  • ベストアンサー率27% (258/936)
回答No.1

参考HPです。

参考URL:
http://www.sf.airnet.ne.jp/tmt/
yahoo_bb
質問者

お礼

関数の連続性の視点からは 0^0=1 が自然というお話と読みました. 通常の 0!=1 の定義も,通常の2項係数などの一般性質からの要請という以外に n!:=1・n! と思うと, 1に数を1つも掛けない状態と考えると 0!=1・0!=1と無理なく解釈することができるのではないかと思っているのですが,今回の「0^0=1」の予想もその線からのものです. ただ,それで困ることがないのかは確信がもてなかったので,ご紹介いただいた話は非常に興味深く読めました.ありがとうございます.

yahoo_bb
質問者

補足

>xが負の実数...f(x)=1/0^(-|x|)と思うと分母が0でまずそう. 書き間違いで, f(x)=1/0^(-x)[=1/0^(|x|)]が正しいですね. すみません.

関連するQ&A

  • 純虚数??

    f(x)=(x-1)(x^2+2ax-a+6)=0が純虚数の解を持つためには、2次方程式(x^2+2ax-a+6)=0が純虚数の解をもてばよい。 2a=0かつ-a+6>0であるから、a=0のときである。 とありますが、純虚数の意味はわかるのですが、((複素数は実数a,bを用いて、a+bi(iは虚数単位)の形で表されます。このうちb=0の場合が実数で、a=0の場合すなわちbiの形のものを純虚数という。)byネット)どうして、2a=0かつ-a+6>0になるんですか??-a+6>0は-a+6>0=0ではだめなんですか?? よくわからないので、どなたか教えてください・・・お願いします!!

  • f(x)はすべての実数で定義され、f''(x)>0を満たす。

    f(x)はすべての実数で定義され、f''(x)>0を満たす。 実数aを1つ固定して、g(x)を次のように定義する。 x=aでないときg(x)={f(x)-f(a)}/(x-a) ,x=aのときg(x)=f'(a) このとき、g(x)は増加関数であることを示せ。 つぎのように考えましたが、途中で挫折しました。 どのような解答になるか、よろしくお願いします。 x=aでないとき、g'(x)=[f'(x)-{f(x)-f(a)}/(x-a)]/(x-a) ・・(1),x=aのときg'(x)=0・・(2) g'(x)>=0がしめせればよいと思うのですが、ここから(1)の処理がわかりませんでした。 ただ、(1)はg'(x)=[f'(x)-g(x)]/(x-a)と変形できるところまではできました。 このことから、g''(x)=)=[f''(x)-g'(x)]/(x-a)となります。 このあとの処理が分かりません。よろしくおねがいします。

  • 関数f(x)=2logx、xの定義域は?

    y=2logxのグラフを描けという数学の問題。 特にxの定義域について質問があるんですが、 log(x^a)=alog(x)だから、 f(x)=2log(x)=log(x^2)といえるじゃないですか。 だから定義域はx^2=0すなわちx=0を除いた実数全体と考えまして、 y=x^2がy軸対称だから、y=2logxもy軸対称になるよう、いわば2本のグラフを描いたんです。 しかし、採点はピンになっていました。 曰く、「y=2logxが定義されるのはx>0だろう。」と。 つまりx<0に描いたグラフは、先生によると蛇足である、と。 しかし、2log(x)=log(x^2)である以上、例えばx=-10など、xの値が負の時にも二乗によって正になりますよね? これって、どちらが正しいのでしょうか? y=2logxのグラフは、x>0の範囲にのみ描くのでしょうか? よろしくお願いします。

  • x>0を定義域とする関数f(x)=12(e^3x

    x>0を定義域とする関数f(x)=12(e^3x-3e^x)/e^2x-1について、以下の問いに答えよ。 (1)関数y=f(x)(x>0)は、実数全体を定義域とする逆関数を持つことを示せ。    すなわち、任意の実数aに対して、f(x)=aとなるx>0がただ1つ存在することを示せ。 (2)前問(1)で定められた逆関数をy=g(x)(-∞<x<∞)とする。このとき、定積分∫8 27(下が8で上が27です)   g(x)dx を求めよ。 解説とその理由をお願いします。 また、すなわち、任意の実数aに対して、f(x)=aとなるx>0がただ1つ存在することを示せ の部分の意味もどういうことかご説明お願いします。

  • 「x≧0を満たす任意のxに対してf(x)≧0」について

    f(x)=x^3-3a^2x+3a^2-a (aは実数の定数)とする。 a≠0のときf(x)は極値を持をもち、f(x)が極小値となるxの値は a>ア のとき x=イ a<ア のとき x=ウエ また、x≧0を満たす任意のxに対してf(x)≧0となるような a の値の範囲をもとめよ。 ア、イ、ウエ までは大体分かりましたが、その先が分かりません。 特に問題の文章で「x≧0を満たす任意のxに対してf(x)≧0」のところが分かりません。場合分けでグラフを描いてみましたが、どうもaの範囲はどこから求めればいいか分かりません。 考え方でもいいので、是非教えてください。 よろしくお願いします。

  • y=x^3+ax^2+x+1が極値を持つa範囲

    y=x^3+ax^2+x+1が極値を持つのはaの値の範囲がどのような時か? 解いてみると y=x^3+ax^2+x+1が極値を持つ条件は,2次関数y’=3x^2+2ax+1の符号が変わる実数xがあることが条件ですから,D>0です D/4=a^2-3>0 で  a<-√3,  √3>aになります ここで質問なのですが,y’=3x^2+2ax+1の符号が変わる実数xとありますが、なぜ実数なのですか? 異なる2つの虚数解ではダメな理由はなんでしょうか まあy=ax^2+bx+cの頂点が(-b/2a,-D/4a)よりD<0だからy座標-D/4aがx軸と交点を持たないのは明らかだからD<0ではだめなのは分かります。 しかしax^2+bx+c=0となる異なる2つの虚数解はあるわけで,この虚数解は符号が変わる虚数xにはならないのでしょうか? すいませんが今の高校では複素数,虚数,共役複素数は習いますが、複素数平面などは習わないので虚軸とかも全くわかりません  虚数というのも 教科書にはb≠0である複素数a+biを;虚数という と書いてるくらいなのでよく分からないです 一応wikiとかで調べましたが

  • lim[x→∞]f(x)の位相での定義は?

    よろしくお願い致します。 『0<∀ε∈R,0<∃δ∈R;0<|x-a|<δ⇒|f(a)-f(x)|<ε』 は 『2つの位相空間(X, T)、(Y, S) と map f;X→Y と L:={b∈Y;∀ε∈nbhd(b),∃δ∈nbhd(a) such that f(δ)⊂ε}(a ∈X)に於いて、 L≠φ の時、f(x)はLに収束するといい limf(x):=L x→a と表記する。そして、L=φの時、f(x)は発散すると言う』 という具合に一般で定義できると思います。 『0<∀ε∈R,0<∃δ∈R;δ<x⇒ε<f(x)』や 『0<∀ε∈R,0<∃δ∈R;δ<x⇒-ε>f(x)』 に就いては、 『Bは位相空間(X*,T*)の部分集合Aの開被覆である』 の定義は 『T* の部分集合Bに於いて、A⊂∪[b∈B]b』 『位相空間(X*,T*)の部分集合Aはコンパクトである』 の定義は 『X* の部分集合Aの任意の開被覆B(⊂T*)に対し、∃{b1,b2,…,bn} ⊂B (n∈N) such that A⊂∪[i=1 to n]bi』 『位相空間(X*,T*)はコンパクト空間をなす』 の定義は 『位相空間(X*,T*)の部分集合X* はコンパクトである』 『位相空間(X,T)が位相空間(X*,T*)の中で稠密である』 の定義は 『X⊂X* 且つ φ≠∀A∈T* に対して,A∩X≠φ』 『位相空間(X*,T*)は位相空間(X,T)のコンパクト化である』 の定義は 『X* はコンパクト空間 且つ XはX* の中で稠密である』 従って、『x→∞』の定義は『xをa∈X* に近づける』を意味す るので εとδを使うと、 2つの位相空間 (X,T)、(Y,S) と map f: X → Y があり、位 相空間(X*,T*)は(X,T)のコンパクト化である時、 L:={b∈Y;∀ε∈nbhd(b,(Y,S)),∃δ∈nbhd(a,(X,T)) such that f(δ)⊂ε}(a∈X*)に於いて、 L≠φ の時、f(x)はLに収束するといい lim f(x):=L x→a と表記し、 L=φの時、f(x)は発散すると言う。 例:実数体RではX*はR∪{+∞,-∞}に相当し、a∈{+∞,-∞} と定義してみたのですが、 どんな位相空間(X,T)やコンパクト化(X*,T*)では良いという訳ではなく、 夫々に何らかの条件を付け加えねばならないような気がします。 どのような条件を付ければ 『0<∀ε∈R,0<∃δ∈R;δ<x⇒ε<f(x)』や 『0<∀ε∈R,0<∃δ∈R;δ<x⇒-ε>f(x)』 の一般での定義が完成しますでしょうか?

  • f(x,y)が(a,b)で全微分可能である事の定義

    f(x,y)が(a,b)で全微分可能である事の”厳密”な定義が解りません… テキストにはf(x,y)が(x,y)で全微分可能であることの定義が載っていましたので、それを参考に以下を考えました。添削をお願いします。 f(x,y)を点(a,b)の近傍で定義された関数とし、f(x,y)のみに関係する適当な定数A,Bが存在して f(x,y)-f(a,b)=A(x-a)+B(y-b)+ε(x,y)√{(x-a)^2+(y-b)^2},ただし、(x,y)≠(a,b)と定義する時、 lim[(x,y)→(a,b)]ε(x,y)=0となる場合、f(x,y)は(x,y)=(a,b)で全微分可能である。

  • y=f(x)でf(x)=0が虚数解をもつとき

    おかしな質問だと思いますが、高校レベルの解答を期待します。質問は、 f(x)が2次式のとき、f(x)=0の実数解は、y=f(x)とx軸との交点を表します。では、f(x)=0が虚数解をもつときに、その虚数解は、何を表しているのでしょうか? というか、何かを表しているのでしょうか? 

  • 導関数の定義域について

    導関数の定義域について 例えば、すべての実数xで微分可能な関数f(x)において、x≧aとするとき、f'(x)の定義域はx≧aですか?それともx>aですか? 導関数の定義域はいつも開区間になっているような気がするんですが、その理由がいまいち理解していません。もとの関数では定義域に入っているが導関数では定義域に入っていないのは、導関数において分母を0にする数だから、絶対値記号の場合分けの分かれ目だから、という理由で合ってますか? もし合ってるとしたら、はじめに質問したf'(x)の定義域はx≧aとなりますよね? とても気になっています。 よろしくお願いします。