• 締切済み

証明

a,bを整数とするときZ次の2つの条件(i),(ii)について(i)と(ii)は同値であることを証明する問題です。 (i) a,bはお互いに素である。すなわち、aとbの最大公約数は1である。 (ii) ax(0)+by(0)=1となる2つの整数x(0),y(0)が存在する。 という問題です。 参考書の答えに Zを整数の集合とし J={}ax+by|x,y∈z} とおく 定義からJは和と整数倍について閉じている a∈J,b∈J と書いてるのですがよく分かりません。 考え方など教えて貰えたら嬉しいです

みんなの回答

  • take_5
  • ベストアンサー率30% (149/488)
回答No.1

この問題のベースには、以下のユークリッドの互除法があります。 それを集合論で焼きなおしたものです。 整数係数のx、yの一次方程式 ax+by=cは、cがaとbの最大公約数の倍数のとき解を持ち、又解を持つのはその時に限る。 ax+by=1 ‥‥(1)を満たす整数x、yの特別値を各々α、βとする。 従って、aα+bβ=1 ‥‥(2) (1)-(2)より a(x-α)=b(β-y)‥‥(3)。 x-αとβ-yは共に整数であるから、a=bの時は (1)は a(x+y)=1となり 整数x、yの値はない。 a≠bの時は (3)を満たす整数x、yの値が存在するためには a,bはお互いに素である。 a、bがお互いに素でない場合を考えてください。例えば、a=2、b=4の時。 逆に、a,bはお互いに素である時に (1)は整数値を持つ。 このとき、mを整数として、x-α=bm、β-y=amが一般解である。

suika_11
質問者

補足

ありがとうございます

関連するQ&A

  • 証明について

    a,bを整数とするとき次の2つの条件(i),(ii)について(i)と(ii)は同値であることを証明する問題です。 (i) a,bはお互いに素である。すなわち、aとbの最大公約数は1である。 (ii) ax(0)+by(0)=1となる2つの整数x(0),y(0)が存在する。 (i)の問題について 2つの整数aとbの最大公約数をGとおくと a=a'G,b=b'G(a',b'はお互いに素)とする。 (1)aをbで割ったときの商をq,余りをrとするとa=bq+r rについて解くと r=a-bq 2つの整数はaとbはa=a'G,b=b'G(a',b'とおけるので r=a'G-b'G この後どのように証明するのでしょうか? (ii) ax(0)+by(0)=1となる2つの整数x(0),y(0)が存在はどのように証明するのでしょうか?

  • 証明

    a,bを整数とするとき次の2つの条件(i),(ii)について(i)と(ii)は同値であることを証明する問題です。 (i) a,bはお互いに素である。すなわち、aとbの最大公約数は1である。 (ii) ax(0)+by(0)=1となる2つの整数x(0),y(0)が存在する。 ★(i)⇒(ii)の証明について ○a, 2a, 3a, …, (b-1)aというb-1個のb-1が分かりません。どうしてb-1と考えるのでしょうか? また、b-1ではなくnと置いてもいいですか? ○(1≦k<l≦b-1)の範囲がどのように現れたのでしょうか? ○差la-ka=(l-k)aはbで割り切れると分かるのですか? ○、1≦k<l≦b-1から1≦l-k≦b-2がどうして現れるのか分かりません ○k-lはbで割り切れないのですか? またk-lはどこから現れたのですか? ○kaをbで割った余りが1であるような整数kが存在するのkaはどこから現れたのですか? ○ka-lb=1となるとax(0)+by(0)=1となる2つの整数x(0),y(0)が存在することが分かりません ○x(0)=k,y(0)=-lはどこから出たのですか? ★(ii)⇒(i)の証明 aとbが共通の素因子pをもつと仮定すると、ax+byはいつもpの倍数になるので、ax+by=1となることはない。 ことについてよく分かりません。 例えば数字を使った表現を利用することができるのでしょうか? 数字を使っても証明はできるでしょうか? 沢山質問をしてすいません。

  • {ax+by|x,y∈Z}

    aとbが互いに素とは限らないときは、{ax+by|x,y∈Z}は、aとbの最大公約数の倍数全体の集合になる。この定理の証明でわからない点があるので質問します。 これらの定理は、S={ax+by|x,y∈Z}とおくと集合Sが"差に関して閉じている"という性質をもつ。 (x_1,x_2,y_1,y_2∈Zのとき、(ax_1+by_1)-(ax_2+by_2)=a(x_1-x_2)+b(y_1-y_2)ここでx_1-x_2,y_1-y_2∈Zとなること)ので、ある正の整数dを用いてS={nd|n∈Z}(Sはdの倍数全体)と表されるのであるが、 Sの最初の定義から、a∈S(x=1,y=0とする)かつb∈S(x=0,y=1とする)であるから、aとbはdの倍数(dはa,bの公約数)であり、・・・(1) ここからがわからないところです。他方、ax_0+by_0=dとなる整数x_0,y_0が存在するのだから、a,bの任意の公約数はdの約数であるから・・・(2)、dはa,bの最大公約数というわけである。で証明は終わるのですが、 証明の大まかな流れは、(1)よりd≦(a,b) (a,b)は、aとbの最大公約数、(2)よりd≧(a,b)よって、d=(a,b)だと思うのですが、ax_0+by_0=dをa'dx_0+b'dy_0=dとしてみたりしても、a,bの任意の公約数はdの約数であるから、というのがわかりません。どなたか、他方、ax_0+by_0=dとなる整数x_0,y_0が存在するのだから、a,bの任意の公約数はdの約数である。を説明してください。お願いします。

  • 整数

    ユークリッドの互除法とa=bq+rを使って次の証明をお願いします。 「a,bは整数とする。(a,b)=1のときax+by=1を満たす整数x,yが存在することを示せ」 (a,b)=1というのは互いに素つまり1以外に公約数を持たないということです。 非常に困っています よろしくお願いします。

  • 非負整数a,b,c,x,yで、ax+byとcが互いに素でなくなるのは?

    非負整数a,b,c,x,yで、ax+byとcが互いに素でなくなるのは? a,b,cは互いに素でa^2+b^2=c^2、またx,y,cも互いに素であるとします。 例えば、(a,b,c)=(3,4,5)、(x,y)=(-1,7)ならば、 ax+by=25となって、cと素でなくなりますが、 どういった条件が成り立てば良いのでしょうか? 任意の整数の組(x,y)が与えられた時に、 (ax+by)/c≠0が約分できるような(a,b,c)の組を知りたいのです。 よろしくお願いします。 ちなみに以前の質問↓の続きです。 http://okwave.jp/qa/q6158436.html

  • 球について

    2つの球(x^2)+(y^2)+(z^2)-2x+4y-4z+a=0 (i) (x^2)+(y^2)+(z^2)=1(1-x+z) (ii) がある (ア)(i),(ii)が接する時a=? (イ) (i),(ii)の交線が半径√3の円となるときa=? (i)は (x-1)^2 +(y+2)^2  +(z-2)^2=9-a 中心A(1,-2,2) 半径√(9-a) (ii)は (x+1)^2 +(y^2 +(z-1)^2=4 中心B(-1,0,1) 半径2 までしかわかりません、 それから 推薦の長さを求める公式は h=|ax(1)+by(1)+c|/√((a^2)+(b^2)) 問題1 中心間の距離はAB=3 ですが 外接るときと内接するときの求め方がわかりません 外接すると3=√(9-a)+2 内接するとき3=|√(9-a)ー2| とう式がどのようにでたのかわかりません 問題2 (i)(ii)から どのように4x-4y+2z-a-2=0がでたのですか? この式は何ですか? そして |-4+2-a-2|/√(16+16+4) はどやってでたのですか?

  • 集合論の問題です。

    集合論の問題です。 同値関係が分かるようになりたいので、 よろしくお願いします。 R^2の関係~を以下で定義。 (x,y), (x',y')∈R^2に対して、 x-x'∈Z and y-y'∈Z なるとき、 (x,y)~(x',y')と表す。 この同値関係による同値類すべての集合をAと表し、 (x,y)∈R^2の同値類を[x,y]とあらわす。 a,b,c,d∈Zのとき、 f( [x,y] ) = [ax+by, cx+dy] ([x,y]∈A) によってf:A→Aが well-definedに定義できることを示せ。

  • 線形変換の定義 証明

    線形変換の定義 証明 以前ご回答頂き理解したつもりだったのですが・・・ 実際に自分で証明を試みましたが出来ませんでした。 理解出来ていなかったので再々度質問させて頂きます。 重複質問で申し訳ないですm(_ _)m 線形変換の定義 [1] 体 K 上のベクトル空間 V 上の変換 f で、 x,y∈V, a,b∈K, について常に f(ax+by) = a f(x) + b f(y) が成り立つもの。 [2] 体 K 上のベクトル空間 V 上の変換 f で、 x,y∈V, a∈K について常に f(x+y) = f(x) + f(y), f(ax) = a f(x) が成り立つもの。 [3] 体 K 上のベクトル空間 V 上の変換 f で、 x,y∈V, a,b∈K について a+b=1 のとき f(ax + by) = a f(x) + b f(y), f(ax) = a f(x) が成り立つもの。 *****以下質問内容***** [1]と[3]が同値であることの証明は理解できたのですが、 [1]と[2]が同値であることを証明できません。 [1]と[2]が同値であることの証明 [1]の定義に従い、[2]を示す。 ・x,y∈V,a,b∈Kにおいてa=b=1∈Kとおくと  x,y∈V,1∈K→f(ax+by)=f(1*x+1*y)=1*f(x)+1*f(y)=f(x)+f(y)=f(x+y) ・x,y∈V,a,b∈Kにおいてy=0∈V,b=0∈Kとおくと  x,0∈V,a,0∈K→f(ax+by)=f(ax+0*0)=f(ax)+0*f(0)=f(ax)=af(x) [2]の定義に従い、[1]を示す。 ・x,y∈V,a∈Kにおいて  f(x+y)がf(ax+by)=af(x)+bf(y)となる事が示せません・・・  そもそも、a∈Kでbはどこからでてくるのでしょうか? [1]→[2],[2]→[1]であるなら、[1]と[2]は同値であると示せると 思うのですが、[2]→[1]はどのようにすれば示せるのでしょうか? お手数ですが、ご回答よろしくお願い致します。

  • コーシー・シュワルツの不等式の証明について

    コーシー・シュワルツの不等式の証明について 二次不等式を使った証明なのですが、場合分けをする理由がよくわかりません。 どなたかご教示お願いします。 問.tがどんな実数値を取っても常に(at-x)^2+(bt-y)^2≥0であることを用いて、次の不等式を証明せよ。    (a^2+b^2)(x^2+y^2)≥(ax+by)^2 これを証明するには、 (at-x)^2+(bt-y)^2≥0の左辺をtについて整理して (a^2+b^2)t^2-2(ax+by)t+x^2+y^2≥0 したがってtの2時不等式が得られるので、(左辺)≥0となる条件から D/4=(ax+by)^2-(a^2+b^2)(x^2+y^2)≤0 移行して (a^2+b^2)(x^2+y^2)≥(ax+by)^2 と、ここまでは導けたのですが、解答では (i)a^2+b^≠0 すなわち a^2+b^2>0のとき (ii)a^2+b^2=0 すなわち a=b=0のとき と場合分けをして、どちらも成り立つことを証明しています。 この二次不等式が0以上であるためには判別式D≦0とともにa^2+b^2>0(下に凸)という条件が入ってくるのだと思いますが、それならば(ii)はいらないのではないでしょうか。2つの場合が成り立たなければならない理由はなんでしょうか。 よろしくお願いいたします。

  • 最大公約数

    整数a=2020,b=1022の最大公約数dを求めよ。また、d=ax+yb となるx,y€Zを1組求めたいです。