• 締切済み
  • すぐに回答を!

ベクトル問題

続けて投稿申し訳ありません。質問させていただきます。 ベクトルの問題で、 aは0<a<1 をみたすかずとする。辺AB,ACの長さが等しい二等辺三角形ABCに対して辺ABを1:5に内分する点をP 辺ACをa:1-aに内分する点をQとする。また、線分BQと線分CPの交点をKとし、直線AKと辺BCの交点をRとする。 (1)ベクトルAK、ARをベクトルAB,ACであらわせ という問題で、 (以下のABなどの表記はベクトルABを意味するとする) AR=(1-a)AB/(4a +1) + (5a)AC/(4a+ 1) メネラウスで KA/RK=(4a +1)/(5-5a)まででました。 しかし解説では次に KA=(4a +1)AR/(5-5a+4a+1) と、RKがいきなりARに、そして分母にいきなり4a+1がたされています。この部分が不可解なのでアドバイスを求めています。 どうぞよろしくお願いします。

共感・応援の気持ちを伝えよう!

みんなの回答

  • 回答No.1

KA/RK=(4a +1)/(5-5a) ってことは KA:RK=(4a +1):(5-5a) でしょ。 ってことは KA:RA=(4a +1):(4a +1)+(5-5a) じゃないかしら。 もう分かるわね。

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • ベクトル

    Aは0<a<1を満たす数とする。辺AB、ACの長さが等しい二等辺三角形ABCに対し、辺ABを1:5に内分する点をP、辺ACをa:(1-a)にAは0<a<1を満たす数とする。辺AB、ACの長さが等しい二等辺三角形ABCに対し、辺ABを1:5 に内分する点をP、辺ACをa:(1-a)に内分する点をQとする。また、線分BQと線分CPの交点をKとし、直線AKと辺BCの交 点をRとする。 1 →BQ、→CP、→AK、→ARを、→AB、→ACで表すと、それぞれ →BQ=-→AB+a→AC、 →CP=1/6→AB-→AC →AK=(ア-a)/(イ-ウ)→AB +エオ /(カ-キ)→AC →AK=(1-s)→AB+s→AQ=(1-s)→AB+as→AC →AK=t→AP+(1-t)AC=1/6t→AB+(1-t)→AC としてあとは連立して解いたのですが答えが回答欄にあいません。 ミスの指摘お願いします。

  • 三角形のベクトルについて教えて下さい。

    △ABCにおいて、辺ABを2:1に内分する点をD、辺ACを3:1に内分する点をEとし 線分CD、BEの交点をPとする。 (1)APベクトルをABベクトル、ACベクトルを用いて表せ。 (2)AB=3、AC=4、AP=√7のとき、∠BACの大きさを求めよ。 この問題の解き方と解答を教えて下さい。   チェバ・メネラウスの定理などを使うらしいです

  • ベクトルの問題です。

    △ABCの辺ABの中点をD、辺ACを2:3に内分する点をE、線分CDとBEの交点をPとする。 ベクトルAB=a、ベクトルB=bとしてベクトルAPをベクトルa、ベクトルbであらわしてください。

  • ベクトルの問題2

    三角形ABCにおいて、AB:AC=5:2とする。 辺ABを2:3に内分する点をDとし、∠BACの二等分線と辺との交点をEとする。 また、線分CDと線分AEとの交点をFとする。 (1)AEベクトルおよびAFベクトルをそれぞれABベクトルとACベクトルを用いて表せ。また、AFベクトルはAEベクトルの何倍と表されるか。 (2)AB=10、AC=4、∠BAC=Π/3であるとき、三角形ABCと三角形ABEおよび四角形BEFDの面積について  △ABC=○  △ABE=○  (四角形BEFDの面積)=○ である。 (2)は○を求める問題です。 (1)のAEベクトルは∠BACの二等分線と辺BCの交点がEなので(ABベクトル+ACベクトル)/2だとわかったのですが、AFが出せません。 ベクトルの基本的な問題なのですが、解き方を忘れてしまい、ノートや教科書の類題を見ても完璧に理解することができずに困っています(--;) 解説よろしくお願いいたします。

  • 平面上のベクトル問題です

    aを1より小さい正の実数、bを正の実数とする。三角形OABにおいて、辺OAを1:aに外分する点をP、辺OBを1:bに内分する点をQとする。辺ABと線分PQの交点をKとし、線分BPと直線OKの交点をLとする。 ※ベクトル省略で表記させていただきます。 (1)OK=【(ア)OA+(イ)OB】/【(ウ)+(エ)】 OL=【(ア)OA+(イ)OB】/【(オ)+(カ)―(キク)】 PK:KQ=S:(1―S) BK:KA=t:(1―t) とおいてみたり、メネラウスの定理を使ったりしてみたのですが、全く分かりません。 ヒントもしくは解説をお願いします!

  • ベクトル(数B)の問題教えてください

     平行四辺形OABCの辺OAを1:3に内分する点をD,対角線ACと線分DBの交点をP,直線OPと辺ABとの交点をQとする。  OPベクトルをOAベクトル、OCベクトルを用いて表せ。

  • ベクトルの問題です。

    三角形ABCの辺BCを1:2に内分する点をD、辺ABを1:2に内分する点をE、ADとCEの交点をPとする。 (1)ベクトルAPをベクトルABとベクトルACで表すと、 ベクトルAP=□分の□ベクトルAB+□分の□ベクトルAC と表せる。 □の部分に数字が入ります。 (2)BPとCAの交点をQとするとき、CQ:QAとBP:PQを求めよ。 答えだけでいいです。

  • 空間ベクトルがわかりません。助けてください

    空間ベクトルの問題です 四面体OABCにおいて、OAベクトル=aベクトル、OBベクトル=bベクトル、OCベクトル=cベクトルとおき、辺OAを1:2に内分する点をP、辺ABを2:1に内分する点をQ、辺BCを1:2に内分する点をR、辺OCを1:2に内分する点をSとする。 (1) 図形PQRSが平行四辺形であることを示してください。 (2) 線分PRと線分QSの交点をGとする。aベクトル、bベクトル、cベクトルを用いてOGベクトルをあらわしてください。 (3) 辺ACを1:1に内分する点をT、辺OBを1:1に内分する点をU、線分TUを2:1に内分する点をVとする。aベクトル、 bベクトル、cベクトルを用いてOVベクトルを表し、点Gと点Vは一致することを示してください。 わかるかた教えてください。お願いします。

  • ベクトル

    △ABCにおいて、辺ABを3:1に内分する点をD、辺BCを2:3に内分する点をEとし、線分CDと線分AEの交点をFとする。ベクトルAB=ベクトルa、ベクトルAC=ベクトルbとして (1)線分DCをt:(1-t)に内分するとして、ベクトルAFをベクトルaとベクトルbを用いて表せ (2)3点A,F,Eが一直線上にあると考えて、ベクトルAFをベクトルaとベクトルbを用いて表せ (3)ベクトルAFをベクトルaとベクトルbを用いて表せ という問題があります (1)は ベクトルAF=(1-t)ベクトルAD+t×ベクトルAC       =(3/4)(1-t)ベクトルa+t×ベクトルb と解けたんですが 2と3が先に進めません どうやってすればいいでしょうか 高校の数Bの平面ベクトルのところです

  • ベクトル問題!!

    平行四辺形ABCDがある。辺BCを1:2に内分する点をP、辺CDを(1-t):tに内分する点をQとし、線分PQと対角線ACとの交点をRとする。「AB」(ABベクトル)=「a」 「AD」=「b」とおくとき、  「a」、「b]およびtを用いて「PQ」を表すと 「PQ」=(t-□)「a」+□/□「b」である。  という問題なんですが、「PQ」=「AQ」-「AP」となるのは分かるのですが、その計算が答えとどうしても合いません。 ちなみに答えは(t-1)「a」+2/3「b」です。