• ベストアンサー
※ ChatGPTを利用し、要約された質問です(原文:ゲーデルの不完全性定理とは?)

ゲーデルの不完全性定理とは?

stomachmanの回答

  • stomachman
  • ベストアンサー率57% (1014/1775)
回答No.1

mori0309さんてば、安直しちゃいけません。(stomachmanも初めて学んだときは高校生だったもんだから、もろに安直してしまいましたけどね。) 無矛盾性と健全性と完全性はよく似ているけど別の概念ですから、慎重に区別しましょう。不完全性定理のストレートな解釈は「自動的に定理を枚挙するようなアルゴリズムはない」という意味です。 系:数学者は失業しない ここで「定理」とは「公理」+「推論規則」から演繹される「真である命題」のことです。全ての「定理」の集合が「理論」。つまり、形式的体系における「理論」というのは、それ(「公理」+「推論規則」)を言ってしまったら、必然的にこういう話(「定理」)になるじゃないか。という、「公理」+「推論規則」の中に既に暗に含まれていた結論の総体です。もちろん「公理」+「推論規則」を変えれば「理論」も変わりますから、ピタゴラスの定理がどんな「理論」にも含まれている、という訳じゃありません。 > ●認識主体が自分自身を完全に認識することはできない。(認識) > ●哲学が哲学を完全に定義することはできない。(定義) 少なくとも「公理」+「推論規則」が記述できるなら、「理論」は陰に(陽にではなく)定義されるわけです。そういう意味で完全に定義され、認識されている。ただ具体的にもれなく枚挙するシステムは作れない。(微分方程式は立てたけど、解けない、というのと似てますね。)これを「DNAが分かればヒトが分かるか」のように拡大解釈しちゃいけません。形式的体系の「理論」は、「公理」+「推論規則」以外の影響は全く受けない。一切の夾雑物は許されないのです。しかしヒトはDNAのみで生きるにあらず。死体や鼻くそにだって同じDNAがあります。 系:医者は失業しない。  一方、「認識主体」や「哲学」が「形式的体系」か、というと全然そうじゃない。理論物理学のいう万物の理論(theory of everything)は、いわば宇宙の「公理」+「推論規則」を見いだそうという研究です。演繹とはまるで逆のことをやっている。「公理」+「推論規則」をいろいろ仮定してみて、そこから演繹される「定理」を現実と比較する、という作業をやっていくしかない。これは帰納法ですね。究極理論!と思っていても、いつか反例が見つからないとも限らない。 系:物理学者は失業しない。 また、数学の正当性を論じる「超数学」自体も、形式的体系ではありません。ましてや「形式的体系」以外の方法を検討しようとする時に、その活動が形式的体系の枠の中にあるのかというと.... つまり、不完全性定理があるかどうかとは無関係に、「哲学を形式的体系として表現できるか」という問題が先に来るんです。 系:哲学者は失業しない。 「認識」に関しては、証明ではなく「ん!そうに違いない!!」という納得が求められている訳で、これは不完全性定理の文脈には乗りそうもありません。 > ●体制が自己の正当性を自分で証明することはできない。(証明) 幾ら何でも、これは「正当性」の意味がずれちゃってませんか? 系:政治家は失業しない。 mori0309さんてば、まあまあ、そう焦らないで。 レイモンド・スマリヤン「決定不能の論理パズル」白揚社 ダグラス・ホフスタッター「ゲーデル・エッシャー・バッハ」白揚社 ナーゲル、ニューマン「数学から超数学へ」白揚社 など、すてきな本がいっぱいありますから、10年掛けてじっくり楽しんで下さいよ。 系:本屋は失業しない。

関連するQ&A

  • 私が知りたいのは ゲーデルの不完全性定理の幾何学での理解です。

    私が知りたいのは ゲーデルの不完全性定理の幾何学での理解です。 (1)第2不完全性定理では 次の表現があり『公理系Nにおいて、その無矛盾性を証明することは不可能である』、そのなかで問題として『 真であるが証明不可能な主張とは何か。』に対して 答え『公理』とあり 自己言及を表現していることは 理解し易いのです。幾何学では5公理です。この理解はたぶん正しいと思います。 ところが (2)私がよく分らないのは 第1不完全性定理です。『形式的体系Sにおいて、形式的体系Sが無矛盾である限り、「形式的体系Sにおいて命題は証明可能である。」という命題も「形式的体系Sにおいて命題は証明不可能である。」という命題も証明不可能である。』 と表される(別表現もありますが)とあります。 ここで現れる命題は抽象的言語であってよく分らないのです。例えばユークリッド幾何学においてはこの具体例は何でしょうか。私の理解は 「例えば無限遠点において平行線は交わるは証明可能である」はその例のようにおむのですが。つまり 例題には ユークリッド幾何学では未定義の無限遠点が現れており 証明はできない のです。いくら公理を増やして定義を明白にしても 未定義の領域はある ということです。 もう一つの例ですが 無限遠点は扱わないという6番目の公理を追加したとしても 例えば 「X・X=-1 は根がない は証明可能である」も証明できない と思うのです。なぜなら複素数は未定義だからです。つまり 『公理で定義されても未定義域は必ずある』が第一不完全性定理の一つの別表現ではないか と思うのです。この理解が間違っているのかどうか どなたかにお教えて頂きたかったのですが 

  • ゲーデルの定理

    完全性定理では「任意のモデルで真である文はすべて1階述語論理で証明可能である」 不完全性定理では「自然数論を含む体系は無矛盾である限り、真であっても証明できない 命題が存在する」とありました。 それではこの2つの定理をペアノの公理系に当てはめると「全ての真である命題は証明可能」でありながらどこかに「真であっても証明できない命題が存在する」わけですか? 何だか矛盾するような感じがしますが、そんな訳ありませんよね。 どう考えたらよいのか教えてください。 よろしくお願いいたします。

  • ユークリッド幾何学にまつわる不完全性定理的理解について

    ユークリッド幾何学にまつわる不完全性定理的理解について ゲーデルの不完全性定理の対象となる数学は『公理系Nが無矛盾である』が前提です。ユークリッド幾何学は 一階述語論理で表されることが出来る自然数の部分集合であって、ゲーデルの不完全性定理の対象である 公理Nの無矛盾である 論理の対象になってないとなり それ以上のユークリッド幾何学の論理的理解が進みません。そこでゲーデル理解を拡張して『公理系Nが無矛盾ではない』として不完全性定理を理解すると(須田隆良氏、中西章氏など) (1)ゲーデルの第一不完全性定理の解釈==>公理系Nが無矛盾であろうがなかろうが 公理系Nにおいて、「公理系Nにおいて命題は証明可能である。」という命題も、「公理系Nにおいて命題は証明不可能である。」という命題も証明不可能である (2)第2不完全性定理の解釈==>公理系Nが無矛盾であろうがなかろうが その無矛盾性を証明できない となります。これらはゲーデル不完全性対象から外れておりますが、対象外のユークリッド幾何学を理解するには都合がよい と思うのです。 (2)によりユークリッド幾何学の公理の無矛盾性は証明できない。 (1)によりユークリッド幾何学の未定義領域(非ユークリッド幾何学、虚数、無限遠点とか)は 公理系Nにふくまれ 多くの証明できない命題があることになります。もちろん 公理定義内では完全性理論は保証されています。 なぜ このようなユークリッド幾何学に こだわる かと申しますと 世の中の 論理(数学、哲学、論理を用いた論文 など)は ユークリッド幾何学的なものが 圧倒的に多いと思うのです。これら論文は ほとんどは一階述語理論で表され かつ ゲーデル不完全性定理 対象論理ではないのです。それら論文の特に(2)に関わる自己証明は出来ない ということは重要であると思うのです。もちろん 自己証明が出来ないと言って間違いとはなりません が 常に 冷静に謙虚に 主張理論の原点を見直すことに 繋がっていると思うのです。勿論、論理構成が出来ていないシロモノは 論外であります。    以上のように理解しているのですが、ユークリッド幾何学にまつわるゲーデル不完全性定理の場外理解は問題ないでしょうか。諸先生のコメント頂けましたら幸甚です。

  • ゲーデル「不完全性定理」が分かりやすく理解できる本

    ゲーデル「不完全性定理」が分かりやすく理解できる本 通学中の電車内に有る「1991年、科学によって神が存在しないことが証明された!」という謳い文句に興味を持ち、一体、その照明方法がどういった手順を踏んだものなのかを調べ初めて早2時間・・・・・。なんつーものに興味を持ってしまったのだろうと若干後悔の渦が・・・・・。 どうにか、この「1991年、科学によって」が、ゲーデルの「不完全性定理」を指しているの・・・・かな?というところまで辿り着きました。という訳で、「じゃあゲーデルの不完全定理を理解すれば、あの宣伝の謳い文句が分かるのかー」と、その定理に関連するサイトを読みかけ・・・・、そんな簡単に理解できるものじゃないコトを認識しました。 気にしなければ、そんなこと知らなくても全く日常生活に支障はないので、忘れてしまえば良いのですが、折角、「不完全性定理」というものの存在を知り、且つ、興味全開なので、出来る事ならば表面上だけでも、齧りだけでも良いので理解してみたいと思っています。 ゲーデルの「不完全性定理」を調べていくうちに、公理・ヒルベルト・公理系・無矛盾性・完全性・パラドクス・・・・・など随所の単語につまづき、その都度、その単語の意味が書いて有る別のページに飛び・・・・・を繰り返し続けているうちに、「これはちゃんとした本で理解した方がいいんじゃないか・・・・」と思ったので質問させてください。 私は一介の高校生なので、ちょっとした専門用語にすら「?」が浮かんでしまいます。不完全性定理を導く過程で必要な用語を解説しつつ、根気と気力が有れば、まあ有る程度理解できるくらいの易しさで書いてある本を紹介してください。また、その定理が生まれるに至った経緯なども豆知識程度に書いて有れば尚嬉しいです。(こちらのページhttp://detail.chiebukuro.yahoo.co.jp/qa/question_detail/q1410933224 のpistis_sophia_00さんの回答の様な感じ) 来る夏休み中に読み終えられるような入門的なもので構いませんので、是非よろしくお願いします。 長文・乱文しつれい致しました。

  • ゲーデルの不完全性定理

    ゲーデルの不完全性定理の証明のアイデアが知りたいと思い、適当な入門書(基礎論の教科書ではないです。)を読んでいるのですが、 まず、定理の主張が「形式的体系Tで通常の自然数を含み、強い意味で無矛盾であり、そこにおける公理や推論規則は帰納的に定義されているかまたはその数が有限であるようなもの、においては文GでGも¬Gも証明できないものが存在する。」 とあるのですが、形式的体系Tがなにを意味しているのかがよくわかりません。これは、形式的と書いてあるのだから文字通り「意味を考えない記号の世界(記号の集まりと、記号を並べて得られる列を変形するいくつかの規則)」と考えればよいのでしょうか? それで、もう一つ質問があるのですが、 まず、準備として記号 ¬,∧,∨,→,∃,∀,(,),0,',+,×,=,x,y,zを用意して、 x,y,zを変数記号と呼びます。 それで、項を次のように定義します。 (i) 0,x,y,zは項。 (ii) t,sが項であるとき、'(t),+(t,s),×(t,s)は項。 (iii)このようにして得られるものだけが項。 (iV)'(t),+(t,s),×(t,s)を簡単にそれぞれt',t+s,t×sと記したりする。また、0',0'',0''',…をそれぞれ1,2,3,…と記す。 また、項tを上の記号の括弧としてではなく、見易さのための補助記号としての(,)を用いることにより、しばしばt(x,y,z)と記したりする。 次に論理式を次のように定義します。 (i)t,sが項のとき、t=sは論理式。 (ii)φとψが論理式でxが変数記号のとき、(¬φ),(φ∧ψ),(φ∨ψ),(φ→ψ),(∀xφ),(∃xφ)は論理式。 (iii)このようにして得られるもののみが論理式 (iV)見易さのために括弧を適当に省略して論理式を記すこともある。 以上により、与えられた記号列が項か論理式かそれ以外のものか判定できるようになります。 準備した記号¬,∧,∨,→,∃,∀,(,),0,',+,×,=,x,y,zを普通に解釈することで、論理式の意味を考えることができるようになります。 ただし、'は後者関数と解釈します。 次に、¬,∧,∨,→,∃,∀,(,),0,',+,×,=,x,y,zに 素数2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53を割り当てます。 記号列が与えられたとき、各記号を上記の対応に従い素数n_1,n_2,n_3,…に置き換え、2^(n_1)*3^(n_2)*5^(n_3)*…を対応させます。対応する数をゲーデル数と呼びます。 以上で準備は終わりで、 質問ができるのですが、 「mがTのある論理式のゲーデル数である」という非形式的な主張は mを素因数分解して各素数の指数を調べることである論理式のゲーデル数であるかどうかがチェックできるので、解釈すると「mがTのある論理式のゲーデル数である」という意味になる論理式が作れる、とあるのですが"具体的"にはどのようにして作るのでしょうか? 私は、論理式の定義が再起的であるから、「mがTのある論理式のゲーデル数であるかどうか」をコンピュータに判定させること(とてつもなく時間がかかりそうですが)可能だと思うので上のような論理式は作れると思うのですが、実際に作るとどんな論理式になるのか興味があります。

  • 私がよく分らないのは ゲーデルの第1不完全性定理です。『形式的体系Sに

    私がよく分らないのは ゲーデルの第1不完全性定理です。『形式的体系Sにおいて、形式的体系Sが無矛盾である限り、「形式的体系Sにおいて命題は証明可能である。」という命題も「形式的体系Sにおいて命題は証明不可能である。」という命題も証明不可能である。』 と表される(別表現もありますが)とあります。 ここで現れる命題は抽象的言語であってよく分らないのです。例えばユークリッド幾何学においてはこの具体例は何でしょうか。私の理解は 『例えば無限遠点において平行線は交わるは証明可能である』はその例のように思うのですが 間違っているでしょうか。 問題は 無限遠点が公理を用いて表されるか どうか という先輩のご指摘があり公理をあらためてみてみますと 公理2に線分を限りなく伸ばすことができる とあります。つまり無限遠点は「公理2の限りなく線分を伸ばした点」と理解され 公理の定義を用いることで表されるとおもうのです。間違っているでしょうか。参考までに公理を挙げておきます。 <ユークリッド 幾何学の公理> (公理1)与えられた2点に対して、それらを結ぶ線分をちょうど1つ引くことができる。 (公理2)与えられた線分は、どちらの側にも限りなく伸ばすことができる。 (公理3)平面上に2点が与えられたとき、一方を中心とし、他方を通る円をちょうど1つ書くことができる。 (公理4)直角はすべて相等しい。 (公理5(平行線公理))直線外の1点を通り、その直線に平行な直線は1本に限る

  • 人類の永遠の謎です。ゲーデル命題

    人類の永遠の謎です。ゲーデル命題 考え事をしていてとうとう聞いてみたいと思いました。 私は高校生で一応クリスチャンなのですが、大分前にゲーデル命題、不完全性定理というものを目にしました。 概要を掻い摘んで見ていたのですが、ふと疑問に思いました。 例えば、神は自然数論を知っている。 だが、自然数論には矛盾が生じている。 こんなものを作った神は全知全能ではない。 よって、人類が思うような神など存在しないと。 なるほど、と思った反面一つ疑問がでてきました。 そもそも、自然数論は人間が作ったもので、神がこれをご存知でいらしても、これの創造主が神であるとは限らない。 矛盾があるならば、その考えの形態は誤りであり、神の存在ないし不在には一切の関係を示すものではないと。 自然数論に矛盾があるために、これを作ったのが神だと決めつけ、全知全能を覆す。 どうなんでしょうか。。。 そもそも、この不完全性定理はもっと複雑で入り組んでいるのでしょうが。。。 誰か私の考えの反例をください。

  • 厳密に数学的なゲーデル命題について

    高橋昌一郎さんの「ゲーデルの哲学」によると、1977年にジェフ・パリスとレオ・ハリントンにより、自然数論において厳密に数学的なゲーデル命題が発見された、とあります。 どのような命題か教えていただけないでしょうか。 または、それを日本語で説明している資料のありかを教えていただきたいと思います。よろしくお願いいたします。

  • ゲーデル数と自然数の有限列について

     ピンポイントな質問で申し訳ないのですが、もし答えられる方がいらっしゃればお願いします。  田中一之著「ゲーデルに挑む」の原論文第一節 p29に論理式は自然数の有限列で表されるとあって、その下の脚注8に「この有限列というは自然数の始切片で定義される数論的関数であって数が隙間を空けて並んでいるのではない」とありますが、ただ数が隙間を空けているものとすると、どのようにまずいのでしょうか(扱いにくくなってとても不便ことはわかりますが)。  このあとにゲーデル数を実際導入する際は素数を使って定義していますが、これは「自然数の始切片で定義される数論的関数」となっているのでしょうか(数論的関数なるものがどういうものなのかがよくわかっていないのです)。  またゲーデルが行ったのは、ある種の自然数がある性質をもつかどうか調べることが、体系内である論理式が証明できるかどうかを調べることになるということを、正確に定式化することだと考えているのですが、 前者の自然数の性質がどういった内容をあらわすか、つまりある自然数がどの論理式の証明可能性をあらわしているかは、数学は教えてくれず(解釈自体は体系内で行われることでなく)、人間が解釈を行う必要があるということでしょうか(もちろんゲーデル数の性質と記号変形としての証明の手順の間には対応があるので恣意的に解釈することは全く不可能ですが)。 変な質問になってしまって、恐縮ですが、お詳しい方お時間あればよろしくお願いします。

  • ゲーデルの不完全性定理を、小学生にも分かるように教えていただきたい

    本の中の不完全性定理の説明文で、 >「この命題は証明不能である」  という命題が証明可能であるならば、  この命題の中で主張している「証明不能である」ということと、  それが「証明可能」であるということとは、  「矛盾」していることになる。 とあるのですが、 どうして矛盾しているのでしょうか? (何となくはわかるのですが) 私は、小学生くらいの数学知識しかないので、 命題、証明の意味がよくわかってないのかもしれませんが、 たとえば 未確認物体(宇宙人みたいな)が、草原などにあったと仮定して、 解剖しても今の科学では、この物体は「なにか」わからない。 「この物体は証明不能である」 今の科学では証明不能であるということは、 証明可能なのではないのでしょうか (科学がまだ未発達ということで) ということとは意味が違うのですかね? 自分で書いていても、頭が混乱してきました・・・笑 数学の知識がある人には笑われる質問かも知れませんが、 「小学生(私)には、証明不可能」な問題を、 証明可能な方、教えて頂きたい。・・・笑 お願いします。