• 締切済み

フィボナッチ数列の一般項

フィボナッチ数列の一般項を求めたいのですが、特性方程式も黄金比の関係も使わないで求める方法はどんなのでしょうか? 紹介しているサイトなどあれば教えて下さい。

みんなの回答

  • tuort_sig
  • ベストアンサー率19% (17/87)
回答No.3

一般項は a(n)=a(n-2)+a(n-1)です。 これでフィボナッチ数列が”定義”されています。 ただしn≧3 a(1)=a(2)=1

回答No.2

とりあえず行列を使った解法も良く知られていると思いますが対角化するときに固有値を求める方程式は特性方程式と言われればそうなのでこれではあまり漸化式の解法と違っていることにはならないかもしれないですね。一応挙げておきました。

  • tyoto
  • ベストアンサー率35% (46/130)
回答No.1

微分方程式を用いてもとけます。解空間が2次元なので、2本の独立なベクトルを求めて、その線形結合が一般項となります。 (適切なサイトはみつかりませんでした。)

関連するQ&A

  • フィボナッチ数列の一般項

    フィボナッチ数列の一般項の求め方を教えてくださいな。

  • フィボナッチ数列の一般化?

    数列{F_n}で、F_0=0、F_1=1が与えられていて、3項間の関係 F_(n+2)=F_(n+1)+F_nを満たすとき、フィボナッチ数列で、一般項も求まります。 これがF_0、F_1、F_2が与えられて、4項間の関係 F(n+3)=F_(n+2)+F_(n+1)+F_n を満たすとき、一般項は求まるのでしょうか。

  • フィボナッチ数列を関数に…

    フィボナッチ数列を関数に… フィボナッチ数列の一般項は Fn=(φ^n-(-φ)^n)/√5  (ただし、φは黄金比) で表されますが、それを f(x)=(φ^x-(-φ)^x)/√5 と関数で考えます。するとそのグラフは点々のグラフになります。 f(1)=1、f(2)=1、f(3)=2、f(4)=3、f(5)=5… それをどうにかして、連続したグラフにできないでしょうか? 特徴として ・どのx(実数)をとってもx+1に関数が存在する。 ・lim(x→∞)f(x+1)/f(x)=φ があげられると思います。 できるかできないかだけでも良いですので、回答よろしくお願いします。

  • Nフィボナッチ数列の一般項について

    つぎのようにNフィボナッチ数列を定義します。ただしNは自然数。 F(1)=F (2)=...=F(N)=1 F(N+n)=F(N)+F(N+1)+...F(N+n-1) (n≧0)-(1) またx^N=Σ[k=0~N-1]x^kのN次方程式のN個の解をA1,A2、...ANと名付けます。 N=2のとき フィボナッチ数列になりますが、 (1)を変形してF(n+2)=(A1+A2)F(n+1)-A1A2F(n) よって F(n+2)-A2F(n+1)=A1{F(n+1)-A2F(n)} F(n+2)-A1F(n+1)=A2{F(n+1)-A1F(n)} 2つの漸化式ができて、ともに右辺を等比数列の和として計算できますので 2つを連立して、F(n+1)について解くと一般項が得られます。 N=3のときも同様にして、一般項が求まります。 そこでNが任意の自然数でもこれは成り立つのでしょうか? 解と係数の関係からN個の連立方程式が導けるとしてもよいのでしょうか? どなたか教えてください。お願いします。

  • フィボナッチ数列の一般項が証明された年って何年?

    フィボナッチ数列の一般項が証明された年って西暦何年でしょうか? また出来れば誰が証明したかも教えてください。

  • フィボナッチ数列での第何項まで表示できるか。

    フィボナッチ数列は皆さん知っていると思いますが、 この数列を今C言語で第n項まで求めるプログラムをつくりました。 今はunsigned long long で printf("%llu") をつかい、94くらいまでは正しく表示させることが出来ました。 これ以上の項を求める場合に、この部分をどのようにかえればどのくらいの項まで表示できるのでしょうか? ただ、プログラム自体を変えるのは無しとします。 あくまで型と%を変える場合どこまでできるのかが知りたいのです。よろしくお願いします。

  • フィボナッチ数列のフローチャートの書き方

    フィボナッチ数列の第n項までの総和を求めるフローチャートの書き方を教えていただきたいです。

  • フィボナッチ数列の性質

    フィボナッチ数列の性質についてです。 ・左から数えて5番目ごとの数字は5で割り切れる。 ・(初項+第2項+第3項・・・・・+第n項) =第n項×(第n項+1) ・フィボナッチ奇数番目のフィボナッチ数をじゅんにたすと、最後の次の数になる。 ・フィボナッチ偶数番目のフィボナッチ数をじゅんにたすと、最後の次の数から1ひいたものになる。 ・フィボナッチ3つ続いたフィボナッチ数の、外2つをかけたものから中の2乗をひくと、(かわりばんこに)1か-1になる。 上のような性質があるのですが、これを数学的(記号などを使って)に表すとどのように書けますか?

  • フィボナッチ数列の一般項と差分法

     フィボナッチ数列の一般項をf(x)とおくと、f(x+2)=f(x+1)+f(x) f(1)=f(2)=1である。 さて一般に、未知の関数f(x)に関するf(x+2)+Af(x+1)+Bf(x)=0を線形2階同次差分方程式という。Δ^2f(x)=Δ{f(x+1)-f(x)}=f(x+2)-2f(x+1)+f(x)であるから、原式は、 Δ^2f(x)+kΔf(x)+Lf(x)=0の形にかけ、線形2階同次というのである。この方程式は 線形2階微分方程式と同様の手法で解ける。 いま、2次方程式λ^2+Aλ+B=0の2根をα,βとすると (1)α=βのとき A=-2α,B=α^2 よって原式はf(x+2)-2αf(x+1)+α^2f(x)=0となる。 これをα^(x+2)でわって、1/(a^x)f(x)=g(x)とおくと、g(x+2)-2g(x+1)+g(x)=0を得る。 すなわち、Δ^2g(x)=0 よってg(x)=c1x+c2,f(x)=a^x(c1x+c2)となる。 (2)α≠βのとき α^(x+2)+Aα^(x+1)+Bα^x=0よってα^xは原式の解となる。β^xも同様である。 ところで、線形2階差分方程式の一般解は1次独立な2つの解の1次結合で表されるから(微分方程式の場合と同様),f(x)=c1α^x+c2β^xとなる。フィボナッチの場合は、λ^2-λ-1=0よりα=(1+√5)/2 β=(1-√5)/2を得るから、一般解はf(x)=c1{(1+√5)/2}^x+c2{(1-√5)/2}^xとなる。 ここでf(1)=f(2)=1よりc1=-c2=1/√5を得るのである。 以上の解説で、フィボナッチ数列の一般項は、f(x+2)=f(x+1)+f(x)であるから、λ^2-λ-1=0を満たすλで等比数列を作る、のは高校生で習うような解き方だと思うのですが、この解説では、2次方程式λ^2+Aλ+B=0の2つの解をα,βとして場合わけして解いています。最初にλ^2+Aλ+B=0を使い、λ^2-λ-1=0を使わない理由を教えてください。また、 (2)α≠βのときα^(x+2)+Aα^(x+1)+Bα^x=0となっているのがわかりません。自分はα^2+Aα+B=0なら納得できるのですが、どなたか解説が正しいことを説明してください。 y”=0 ⇔ y’=C1 ⇔ y=C1x+C2 や (C1α^x+C2β^x)”+a(C1α^x+C2β^x)’+(C1α^x+C2β^x) =C1(α^x”+aα^x’+bα^x)+C2(β^x”+aβ^x’+bβ^x)=0などは納得できました。

  • フィボナッチ数列に関する問題 大学入試

    フィボナッチ数列1 1 2 3 5 8 13 21 .............. がある 初項は1 第2項は1であり それ以後の項は前2項の和になっている この数列の初項から第1000項までに1の位が7である数は全部でいくつあるか という問題なのですが 書き出してみて規則性を見つけようとしましたが、見つからず ならば一般項を表現してそれから解こうと思ったのですがそれもできず うまく解けませんでした どうやって解けばいいのでしょうか?