• ベストアンサー

E=hν は運動エネルギーですか?

今更何をという感じですが、粒子の波動性に着目した場合エネルギーはE=hνで表されますがこれは運動エネルギーと言っていいんですよね?教科書にはエネルギーとしか書いてありませんが波を考えているので運動と言うもの自体定義できないとかいうわけじゃないんですよね? すいませんがお願いします。

質問者が選んだベストアンサー

  • ベストアンサー
回答No.2

No.1を書いた者です。少し補足します。 > 純粋に運動エネルギーでなければ結局、何エネルギーなんだろう 「運動エネルギー」の定義をどのようにとらえておられるかが問題になってきます。 (1/2)mv^2 が定義になるのはニュートン力学の範囲だけで、量子力学や相対論を考えるとそう単純にいかなくなります。何かに衝突して相互作用を起こしたときに、あたかも運動エネルギーE(=hν)をもつ古典粒子と同じだけの効果(仕事)を発揮するという意味で、hνは運動エネルギーに対応すると言えるでしょう。 エネルギーというのは、「何々エネルギー」という分類を越えて存在する自然界の基本量と捉えるのが賢明です。

jimihenn
質問者

お礼

親切にありがとうございます。 やはり古典論とごっちゃにしてました(未だに・・)。

その他の回答 (2)

  • guiter
  • ベストアンサー率51% (86/168)
回答No.3

hagiwara_m さんの仰るように運動エネルギーと思っていいです。 ただし、光子の場合はもともと波のイメージがあるからか E=cp を運動エネルギーとは呼びません。 私は素粒子物理を専門としていますが、粒子の場合でも普段は運動エネルギーと 強調しないことの方が多いように思います。 E=hν=p^2/(2m) となっていることは、 Schrodinger 方程式がどのようにして導き出されたかを考えてみて下さい。 E → ih∂/∂     (h はエイチバーと思ってください) p → -ih∇ という置き換えの話なども理解できると思います。

jimihenn
質問者

お礼

ありがとうございました。 次元の低い質問に付き合っていただいてすいません。 お陰でもやもやが消えました。

回答No.1

理論家の方からの回答を待ちたい気もしますが、解答欄が空で寂しいので、叩き台として、拙いお答えをいたします。 物質波は、普通光速よりも十分遅い粒子の運動を考えます。このとき、E=hν=p^2/(2m)が成立ちますので、hνは普通の運動エネルギーと思っていいです。 電磁波(光子)についても、E=hνと書くことができますが、この場合はhνはcpに対応し、運動エネルギーとは言えないと思います。

jimihenn
質問者

お礼

どうもありがとうございます。(やっと回答がついてくれた!!) わかりました。とはいえ他のサイトで質問すると運動エネルギーだという答えが 返ってきました。hagiwara_mさんのお答えに間違いはないと思っておりますが、 僕自身、完璧に理解できてません。純粋に運動エネルギーでなければ結局、何エネルギーなんだろうという感じです。波の振動エネルギー?粒子性と波動性を混同するのがだめ?もしかして質問自体がナンセンス? おっしゃるように回答を待ちたいと思います。

関連するQ&A

  • 粒子のエネルギー E=(1/2)mv^2とE=hν

    一般的に量子力学などでエネルギーを求める場合、波長λ=h/pよりp=h’k、(h’=h/2π)をE=p^2/(2m)に代入すると、≪E=(h’k)^2/(2m)≫となりますよね。 一方、粒子のエネルギーは【E=hν】とも表されます。速度v、振動数ν、としてv=νλ、λ=(2π)/kより『ν=(kv)/(2π)』となり、またλ=h/pよりmv=h/λとなる。これよりv=(h’k)/mを『』に代入し、さらに【】に代入するとE=(h’k)^2/mとなって、≪≫の式と違います。教科書では≪≫の式ですが、どのような条件で違いが生まれてくるのですか?

  • 電子のエネルギーについて

    プランク等が光子のエネルギー、運動量を E = hν, p = h / λ として表現できると仮定しています。 一方、光のエネルギーは相対論からすると、 E = mc^2 になると考えられるので、光の運動量は E = mc^2 = hν とすると、 p = mv = mc = hν / c = h / λ となると考えることができます。 ところが、ド・ブロイ等はこれが電子にも当てはまると言っています。 E = hν, p = h / λ 1. ここで言う、電子のエネルギーとは何でしょうか、これには質量によるエネルギーは含まれているのでしょうか?(シュレディンガー方程式を見る限りは運動エネルギー+ポテンシャルのようにも思えますが・・・) 2. 電子は光速で飛び回っているわけではないので、 p = mv = mc = hν / c = h / λ は満たしません。にもかかわらず、ド・ブロイはなぜこの式を適用することができると考えたのでしょうか? ( i)ポテンシャルが存在せず、Eを運動エネルギーと考えた場合・・・ E = hν = 1/2 mv^2 従って、 p = h / λ = hν / v = 1/2 mv ?? これは運動量の定義と矛盾します。 (ii)ポテンシャルが存在せず、Eを運動エネルギー+静止エネルギーと考えた場合(電子の速度は光速に比べて十分遅いので)・・・ E = mc^2 + 1/2 mv^2 ~ mc^2 = hν 従って、 p = h / λ = hν / v = mc^2 / v ?? これも運動量の定義と矛盾します。 つまり、電子のように遅い粒子では、E = hν と p = h / λを同時に満たすことができないように思えるのです。 数多くある量子力学の本でも逃げている部分であり、難解な質問かとは思いますが、ご存知の方がいらっしゃればご回答お願いします。

  • エネルギーE=(h~k)^2/(2m)について

    基本的な事柄ですみませんが教えてもらいたい事があります。 固体物性の分野でよく自由電子のエネルギーをE=(h'k)^2/(2m)と表しますが、ボーアの理論における電子の離散的なエネルギーとでは何が違うのですか?例として水素原子のエネルギーはE=-(me^4)/(8ε^2h^2n^2)と表されて量子数nで不連続なエネルギーを持ち、基底状態n=1でもE=0にはなりません。一方、E=(h~k)^2/(2m)は、エネルギーEは波数kで連続な値を持つ(厳密にはブリルアンゾーンで不連続ですが)2次関数で表され、k=0の時はE=0となります。また、イオン化?して束縛されてない?状態を表しているのかE>0です。 エネルギーの正負の違いは何でしょうか。そして後者は自由電子で波として捉え、前者は古典量子論として電子を粒子とした価電子のエネルギーを指すのでしょうか。それぞれが指すエネルギーEの違いを具体的に詳しくご教授お願いします。m(__)m

  • 運動量と運動エネルギーについて

    物理における力学で、運動量と運動エネルギーの違いが 分かりません。例えば、質量mのボールが速度vを持っているとき、運動量は m×v 、 運動エネルギーは 1/2mv^2 と定義される。 と教科書には書いてありますが、僕にとっては、運動量も運動エネルギーも、どちらもイメージとしてボールが持つ「勢い」と思えてきて、二つをわざわざ定義する意味というか、根拠が良く分かりません。 定義により、そういうものと決まっている、約束する、 と言われればそれまでなのですが、運動量と運動エネルギーの持つ物理学的な意味は何なのでしょうか。

  • トンネル効果について

    独学で量子論を勉強している大学一年生です。教科書はアトキンス物理化学要論第5版をつかっています。 早速質問です。 教科書に、 「粒子が容器の壁の中に入り込んでいるとき、そのポテンシャルエネルギーが無限大ではないが、E<Vであれば(全エネルギーがポテンシャルエネルギーよりも小さく、古典的には粒子が容器から脱出できない)、波動関数は急に0になる訳ではない。」 とかいてあるのですが、全エネルギーはポテンシャルエネルギーと運動エネルギーの和のことなので、E<Vのとき、運動エネルギーが負になると思います。これはあり得るのですか? また、シュレディンガー方程式を使えば、障壁にぶつかる粒子がトンネルする確率を求められるらしいのですが、どのようにもとめられますか? 一次元のシュレディンガー方程式 -(h^2)/2m(d^2ψ/dx^2)+V(x)ψ=Eψ で、V(x)を障壁におけるポテンシャルエネルギーV(>E)として、ψ=Ae^(λx)とおくと、λ=±√{2m(V-E)}/ h となったのですが、ここからどうすればよいのかわかりません。

  • 粒子の二次元の回転運動(量子論)

    独学で量子論を勉強している大学一年生です。 早速質問です。 二次元平面で円運動する粒子の波長は、波動関数の周期的境界条件から λ=2πr/n (rは軌道の半径、n=0,1,2…) と表され、ドブロイの式から、粒子の運動エネルギーは E={(nh)^2}/2I (hはディラック定数、Iは慣性モーメント) となるところまではわかるのですが、教科書では、運動エネルギーが出て来たところで突然 n=0,±1,±2…となっています。 マイナスのnは反対周りの回転に対応しているとかいてあるのですが、なぜいきなり負のnを考えるのか、どこから出て来たのかがわかりません。

  • 粒子の取り得るエネルギーとは

    ポテンシャルV(r)が存在する空間において粒子が取り得るエネルギーを求めよという問題について質問があります。 シュレディンガー方程式 -h~^2/(2m)ΔΨ+V(r)Ψ=EΨ をE-V(r)=(h~k)^2/(2m)のようにして解いた時、エネルギー固有値Eだけがこの粒子が取り得るエネルギーとなるのでしょうか。それともエネルギー準位Eを計算から求めて、E-V(r)の値が粒子の取り得るエネルギーとなるのでしょうか。ニュートン力学ではエネルギー保存則より、全エネルギーE=運動エネルギーK+ポテンシャルエネルギーUのようにKとUに相互関係があるように、量子力学でのエネルギーとは場のポテンシャルの分も考慮したものを言うのですか?

  • 重力の位置エネルギー、運動エネルギーについて

    重力の位置エネルギーの定義W=mgh、運動エネルギーの定義K=1/2・mv^2について質問です。 まず重力の位置エネルギーについてですが、物体を斜面上の基準面から高さhの点で固定したとき定義からエネルギーはw=mghとなりますが、その固定をはずして物体を運動させて基準面にある物体に衝突させたときに与えるエネルギーは斜面から垂直抗力を受けてるので与えられた重力を100%エネルギーとして蓄えることはできないので定義より小さくなると思ったのですがそれでは定義と矛盾するので、垂直抗力は0(無視できる)と考えないといけないと思うのですが、もしそうならばなぜそうなるのか分かりません。 また運動エネルギーについても同様で、物体に力Fをt秒間与えるとき、tを無限に分割し微小時間Δtを考えるときΔt秒に与えられるエネルギーはFΔtとなりますがそのあとFΔt与えるには物体はFΔtエネルギーを持っているので(速さFΔtで運動しているので)余分にFΔt必要になり結果的には Ftのエネルギーしか与えることが出来ないと思うので定義のようにならないと思うのですが定義と矛盾するので自分の考えが間違っているのですが…。 しかしこの余分に必要だという考えを否定すると運動エネルギーは定義のようにはならないと思うのです。 どのように考えどのようになっているのか何か知っていれば教えてください。 こうだからこうなる、こうだから間違っていると理由も付けていただけれ有難いです。

  • 原子核 運動エネルギー

    制止しているRa原子核がα崩壊をしてRn原子核になった Ra、α粒子、Rnの実力派をM0、m1、M1とする このとき発生するエネルギーをQとし、α粒子の運動エネルギーをQを用いて表せ 光速をcとする E=ΔMc^2よりQ=(M0-m1-M1)c^2なのはわかったのですが運動エネルギーをどうやって表すのかわかりません 教えてください!

  • 一次元の井戸型ポテンシャル中の自由粒子についてハミルトニアンを導くとこ

    一次元の井戸型ポテンシャル中の自由粒子についてハミルトニアンを導くところなんですが 全エネルギー E = p^2 / 2m + U(x) --(A) p <- -ih d/dx (hは棒付き) --(B) ∴ H^ = (-h^2 / 2m) d^2/dx^2 + U(x) --(C) において、 (1) (B)運動量演算子 -ih d/dx がいきなりでてくるのがわかりません。教科書など見てもこの導き方が載っていません この運動量演算子というのは波動関数に作用させると運動量になるというものなのでしょうか (2) (C)ハミルトニアンは演算子なのに、U(x)の部分はただのスカラーになっていますがいいのでしょうか (3) (1)で運動量演算子を波動関数に作用させたものが運動量ならば、波動関数に(C)を作用させたものは、(運動エネルギー)+(ポテンシャルエネルギー×波動関数)になってしまいませんか? そうするとシュレーディンガー方程式は (運動エネルギー)+(ポテンシャルエネルギー×波動関数)=(全エネルギー×波動関数) となって、次元が合わないような状況になってしまいませんか? 質問の意味がわからなかったらすぐ補足するので、1つでもいいので教えてください。よろしくお願いします。