• ベストアンサー

漸化式がa_n+1 = √(pa_n + q )となる数列の一般項

a_n+1 = √(pa_n + q ) (但しp,qは実数でp≠0、q≠0) このような漸化式の数列a_nの一般項を求めてみたいのですが、 (p,q) = (1,2)の場合については一般項が求まりましたが、 それ以外の場合の一般項が求められません。 このような形の漸化式からa_nの一般項を求める方法はあるのでしょうか?

質問者が選んだベストアンサー

  • ベストアンサー
  • chaozux
  • ベストアンサー率40% (25/61)
回答No.1

はじめまして。 a_0の値は分かっている前提で良いのですよね? (1)数学的帰納法で、0≦a_n≦kが成り立つことを証明。 (2)a_n=cosn で置き換える。 cosnに置き換えると、cosθを使った公式などで、変換していけると思います。 大雑把な回答ですみません。参考になれば幸いです。

R_Earl
質問者

お礼

回答ありがとうございます。 試しにpとqに適当な値を代入し、a_n = cosnとおいて式変形してみたのですが、 そうするとcosnの4次方程式がでてきます。 この4次方程式を解いても cosn = 定数 となってしまい、一般項にはならなそうなのですが、 4次方程式がでてきた時点でどこか式変形を間違えているのでしょうか?

R_Earl
質問者

補足

初項については、初項をaとおいた時の一般項を考えています。 等比数列の一般項a_n = ar^(n-1)のような、どんな初項にも 対応できる形を考えています。

関連するQ&A

  • 漸化式(隣接2項間)・a_n+1=pa_n+q

    漸化式(隣接2項間)の問題・a_n+1=pa_n+q 隣接2項間の漸化式の問題で 例)α=-1より、a_(n+1)+1=3(a_n+1) これがなぜ「数列(a_n+1)が、初項a_1+1=2,公比3の等比数列であることを表している」のでしょうか? どなたかわかりやすくお願いします。

  • 数列の一般項を求めたいです。

    以下の漸化式を持つ数列を一般項で表したいです。 簡単に求め方が説明できる場合は求め方についてもお教えいただけますと幸いです。 a(n+1)=2*a(n)+(p*n+q)*2^n そもそも、一般項もとまるのでしょうか?

  • 漸化式a(n+1)=p・a(n)+qの解き方

    お世話になっております。基本の漸化式について質問させて下さい。 教科書の基本例題を通して解説下さると有り難いです。 問「条件 A1=1、A(n+1)=3・A(n)+2 で定まる数列{An}の一般項を求めよ」 まず、漸化式についてA(n+1)=x、A(n)=x とおいて方程式x=3x+2 …(1)を立てる。 漸化式から(1)式を辺々引いて、A(n+1)-x=3{A(n)-x}…(2) (2)が成り立つことは、(1)の解x=-1を(2)に代入して展開すれば成り立つから、(1)(2)の意味はわかりました。 次に教科書の解では、A(n)-x=B(n)とおくとき、(2)式は、B(n+1)=3・B(n)…(3) と表せることが、唐突に書かれておりましてこの意味が中々解らずに困っておるのですが、色々探ってみたら (3)式が成り立つのは、与えられた漸化式から {An}=1,5,17,53,……であるから、{Bn}={An+1}=2,6,18,54,……であって、ここから例えば n=1のとき(2)式の左辺はA(2)-(-1)=A(2)+1=6。つまり{Bn}、(n=1,2,3……)に対して{B(n+1)}に等しいから、(3)式が成り立つということでしょうか。 また、この(回りくどい)質問が仮に正しいとして、この基本の漸化式を解く場合はいつもこの考え方(与えられた条件から元の数列の3~4項くらいは求めておく)で解くものでしょうか。 或いは上で書いた教科書の解のように、即座にB(n+1)=p・B(n)が成り立つものとして解くのでしょうか。 長ったらしい質問で申し訳ありませんが、もう少しで基本が掴めそうなので、駄目押しのご回答を下さい。宜しくお願いします。

  • 数列 漸化式

    A(n+1)=2A(n)+n (初項A(1)=1) という数列があるとします。 この一般項の形を求めるのに、この漸化式を満たす数列{B(n)}=αn+βを設定して、 この漸化式に代入、恒等式から{B(n)=-n-1}がわかります。 この{B(n)}の式が最初の漸化式を満たすわけですから、 A(n+1)=2A(n)+n B(n+1)=2B(n)+nの両辺を引いて A(n+1)-B(n+1)=2(A(n)-B(n))という等比数列が成り立つので、 A(n)=3*(2のn-1乗)-n-1   となると思うのですが、 ここから質問です。 なぜ最初の漸化式を満たした、B(n)=-n-1 と これまた漸化式を満たしている、A(n)=3*(2のn-1乗)-n-1 が異なっているのでしょうか? 回答お願いいたします。

  • a_1 = √3, a_{n+1} = √(2+a_n) で定まる数列

    a_1 = √3, a_{n+1} = √(2+a_n) で定まる数列 {a_n} の一般項は? 上の漸化式は、どうやら一般項が求まるようですが、そのやり方がわかりません。 どなたかご教授お願いします。

  • 数列の一般項

    次の条件を満たす数列 { a_n }の一般項を5種類求めたいのです。 数列 { a_n } の条件 : a_1 = 1, a_2 = 2, a_3 = 3, a_4 ≠ 4 例えば、 a_(n+2) = a_(n+1) + a_n とおいて、隣接3項間漸化式を解けば、ひとつ求めることができるというアイデアは浮かぶのですが、そのほかにどうすれば求められるでしょうか? ただし、nについて場合分けをするのは無しです。 よろしくお願いします。

  • 漸化式の一般項の求め方を教えてください。

    漸化式 a(n+1) = {(n+3)/(n+4)} * a(n) +1 のように、a(n)の前にnの関数が付いている場合の 一般項の求め方を教えていただけないでしょうか? かなり検索してみたのですが、見つけられませんでした。 よろしくおねがいします。

  • だれか隣接3項間漸化式について教えてください。

    中年男性です。いま数列の勉強をしています。「なるほど高校数学 数列の物語」という読本を 読んでいるのですが、手に負えないので質問させてもらいました。  漸化式  A1=2, A2=3, An+2=5An+1-6An    n>=1 ・・・(1)  を満たす数列が特性方程式X^2=5X-6の解 X=2、X=3 から 2^n-1 と3^n-1に なることは実際に確かめて確認して納得したのですが、続くくだりから判らなくなって しまいました。  そのくだりとは“そこで次に問題となるのが、上記のような等比数列以外にこの  漸化式を満たす数列があるのか、ということです。  結論からいうと、特性方程式が異なる2つの解をもつときは、特性方程式の解を  公比とする等比数列の組み合わせを考えるだけで十分です。このことは次の  ようにして判ります・・・” と書いてあり特性方程式の解以外にないことの証明が始まるものと期待して読み進めたの ですが、漸化式の変形が始まり結局    An+1-2An=(A2-2A1)3^n-1    n>=1  ・・・(2)    An+1-3An=(A2-3A1)2^n-1    n>=1  ・・・(3)  という式になり、(2)式から(3)式を引くことで、    An=(A2-2A1)3^n-1-(A2-3A1)2^n-1     n>=1  となり、条件A1=2、A2=3を代入して一般項は    An=-1×3^n-1+3×2^n-1     n>=1 ・・・(4)  となりました。  これで特性方程式の解から導かれる数列以外に解がないことの  証明になるのでしょうか。また数列2^n-1や数列3^n-1が漸化式を  満たすことはすでにnに1、2、3・・・と代入して確認したのですが  一般項が(4)式であるということはどういうことなのでしょうか。  (4)式にnに1、2、3・・・と代入して確認していませんが(成立するのでしょうが)  このあたりの事情がよく判りません。  どなたか解説して戴けないでしょうか。

  • 3項間漸化式について

    3項間漸化式を解くときには、特性方程式を用いるのが定石だと思いますが、いろんな参考書を見ると、pa(n+2)=qa(n+1)+ra(n) (pqr≠0)となっています。一回、q=0のとき、特性方程式を用いたのですが、(たぶん)漸化式の条件を満たしていました。q≠0の必要性ってあるんですか?

  • 数列の漸化式a(n+1)=pa(n)+qでc=pc+qを特性方程式と呼んでいい?

    「特性方程式」で検索したり、 http://oshiete1.goo.ne.jp/kotaeru.php3?q=2371813 などをみて思うのですが、 数列の漸化式 a(n+1)=pa(n)+q を解くために、準備として考える式 c=pc+q を特性方程式と呼んでいいのでしょうか? 検索したところ、そう呼んでいる人が多いです。 しかし、僕はそう呼びたくはありません。 もちろん、3項間漸化式a(n+2)+pa(n+1)+qa(n)=0で x^2+px+q=0を特性方程式と呼ぶのはいいです。 以前、高校の参考書をたくさん比較したことがあります。 大手の数研出版などは、特性方程式と呼んでいなくて、小規模な出版社では特性方程式と書かれていた記憶があります。 c=pc+qを特性方程式と呼ぶのは、権威ある数学辞典などにも書かれているのでしょうか? それとも、高校のそれも学校外の場所でよく使われる俗語なのでしょうか? 外国ではどうなのでしょうか? 言葉というのは、時々、間違った意味で世間に広まってしまい、それが辞書的にも認知されることがあります。「ホームページ」とか「ハッカー」とか。 c=pc+qを特性方程式と呼ぶのもそういった部類でしょうか? たとえば、みなさんが高校生に教える指導的立場にあったとして、c=pc+qを特性方程式と教えていいのでしょうか? ちなみに、教科書にはそうは絶対にかかれていないと思います。