- 締切済み
- 暇なときにでも
2つの数列の関係式
数列{an}と{bn}は関係式 an+1=(4an+bn)/6 bn+1=(-an+2bn)/6 (n=1,2,・・・) を満たしている。an=1 bn=-2 。 このときに ● {an}が 4an+2 - 4an+1 + an =0 を示す方法 ★ 数列{2^nan} が等差数列であることを示す方法。 ▲ {an}と{bn}の一般項を求める方法。 を教えていただきたいです。 ●は三項間漸化式で解こうとしたのですが、これを示さないといけないから、この式は使えないのでどうしたらいいかわかりませんでした・・・ それとanとか解りづらくてすいません・・・ どなたかよろしくおねがいします。
- imapi
- お礼率27% (6/22)
- 数学・算数
- 回答数2
- 閲覧数168
- ありがとう数0
- みんなの回答 (2)
- 専門家の回答
みんなの回答
- 回答No.2
- tatsumi01
- ベストアンサー率30% (976/3185)
★ 数列{2^nan} が等差数列であることを示す方法。 4an+2 - 4an+1 + an =0 両辺に 2^n を掛けて、An=2^nan と置き換える。 ▲ {an}と{bn}の一般項を求める方法。 自分でやってね。
- 回答No.1
- tatsumi01
- ベストアンサー率30% (976/3185)
● {an}が 4an+2 - 4an+1 + an =0 を示す方法 bn+1=(-an+2bn)/6 から (1) an=-6bn+1 + 2bn an+1=(4an+bn)/6 から (2) bn=6an+1 - 4an 式(2) を式 (1) に代入するだけだと思いますが。
関連するQ&A
- 2数列の共通項から新しい数列を作ります
初項が1,公差が3の等差数列{An}と 初項が11,公差が10の等差数列{Bn} に共通に含まれる項を小さい順に並べてできる数列{Cn}の一般項Cnを求めよ。 ------------------------------- という問題で、自分でといてみたところ、 An=3n-2 {Bn}=11,21,31,41,…,10n+1 An=Bnが成り立つBnの最小値は31なので、 初項は31、公差は3×10=30 よって、{Cn}=31+(n-1)・30=30n+1 ------------------------------- と解いてみたのですが、模範解答はもっと長く書いてありました。私の解き方ではダメなのでしょうか??または今回は偶然求められただけなのでしょうか? ちなみに、模範解答を読んでも意味がわからないので、どなたかわかりやすくまとめて頂けるとありがたいです。 ------------------------------- 【模範解答】 An=3n-2 Bn=10n+1 等差数列{An}の第p項と等差数列{Bn}の第q項が一致する。 すなわち、Ap=Bq。このとき、 3p-2=10q+1 …(1) 3(p-1)=10q これより、3と10は互いに素であるから、qは3の倍数となり、 q=3k (kは整数) …(2) とおける。 (2)を(1)に代入して、 3p-2=10×3k+1 p=10k+1 よって、 p=10k+1 q=3k p>0,q>0より,k>0であるから、 A(10k+1)=3×(10k+1)-2 =30k+1 したがって、{Cn}=30n+1
- ベストアンサー
- 数学・算数
- 等差数列の共通項
等差数列{An}と{Bn}があります。この2つの等差数列の共通項を並べてできる新しい数列の一般項を求める問題です。 {An},{Bn},それぞれ一般項が, An=8n-2, Bn=6n+2 です。 また,それぞれの項を少し書き出すと, {An}:6,14,… {Bn}:8,14,… と,共通項の最小値が14であることが分かります。 ここで,{An}の第p項と{Bn}の第q項が等しいとすると, Ap=Bq であるので, 8p-2=6q+2 となります。 よって, 4p=3q+2 となり,変形して, 4(p-2)=3(q-2) と表されます。 ここまではよいのですが,次のkの置き方について,問題集の回答を見たのですが,いまいちよく分かりません。以下はその解答です。 「4と3は互いに素であるので,kを自然数として, p-2=3(k-1), q-2=4(k-1)」 何故ここで(k-1)なのでしょうか?kではいけない理由は何でしょうか? どなたか分かる方,教えてください。
- ベストアンサー
- 数学・算数
- 数学B、数列についての質問です
数列の一般項を求めるパターン、例えば特性方程式やズラして引くなど いろいろありますが、このような問題もパターンでしょうか? 【問題】 数列{An}は A1=6 A(n+1)=2An-3n+1 (n=1,2,3…) (1)Bn=An-3n-2(n=1,2,3…)で定められる数列{Bn}が等比数列であることを示せ (2){An}の一般項をもとめよ An=2^(n-1)+3n+2 となりますが A(n+1)=2An-3n+1 のように 漸化式に『数列』と『n』が混在している時 この問題では Bn=An-3n-2 として考える誘導がついていましたが どうしてこのような数列を考えたのでしょうか? これはたまたま上手くいくからなのでしょうか? それとも何か理由があるのでしょうか?
- ベストアンサー
- 数学・算数
- 【至急】 数学Bの数列の質問です。
【至急】 数学Bの数列の質問です。 a2=9の等差数列{an}があり、初項から第10項までの和は230である。 また、数列{bn}をb1=-1、bn+1=2bn+an(n=1,2,3…)で定義する。 (1)数列{an}の初項は【ア】、公差は【イ】であり、一般項はan=【ウ】n+【エ】である。 途中式が分からなくて困っています。 答えはア…5、イ…4、ウ…4、エ…1 です。 よろしくお願いします。
- ベストアンサー
- 数学・算数
- 数列の漸化式質問
教科書で漸化式の記述です。 an+1=pan+qで与えられている数列の求め方 例 a1=3 an+1=3an-4 で定義されている数列を{an}とする 数列{an}は 3 , 5 , 11 , 29 , 83 ,・・・となりますよね。 この数列{an}の各項から2を引くとできる 数列を{an -2}は 1 , 3 , 9 , 27 , 81 , ・・・ となる。数列{an -2}は、初項1 公比3 の等差数列になっている。 数列{an}に対して、数列{an -2}の一般項は an -2=1×3^n-1となっています。 ここが何でn-1なのですか? {an}はn項あると思うのですが・・・ できるだけ詳しい解答お願いします。
- ベストアンサー
- 数学・算数