• ベストアンサー

事象と認識について

次の問題を教えてください。 S=T={0,1,2,3,4,5,6,7,8,9}とし、関数f:S→Tを「f(x)={xを4で余った余り}」と定義する。例えば、f(5)=1,f(6)=2である。 (1)このfから生成した分割P(f)を求めよ。 (2)分割P(f)から生成される集合体F(P(f))を求めよ。 (3)関数g:s→Tを「g(x)={xを2にわった余り}と定義すると、gはF(P(f))-可測であるか否かを吟味せよ。 宜しくお願いします。 PS.「確率について…2」については無視してください。   締め切りたいのですが,解答がなく締め切れません。

質問者が選んだベストアンサー

  • ベストアンサー
回答No.1

測度論ですか? 全くの無知ですので的外れ覚悟ですが用語の語感だけを頼りに。 (1)このfから生成した分割P(f)を求めよ。 分割ですよね? とすれば分割P(f)とはSの2元についてfによる像が一致するとき同値であるとした同値類の意味でしょうか? (i)P(f)={{0,4,8},{1,5,9},{2,6},{3,7}}? (2)分割P(f)から生成される集合体F(P(f))を求めよ。 集合体って確か和や積や補集合をつくる演算に関して閉じてるやつですよね? P(f)の2元をとって和を考えてみました。これはcombination(4,2)通りあります。 (ii){0,1,4,5,9},{0,2,4,6,8},{0,3,4,7,8},{1,2,5,6,9},{1,3,5,7,9},{2,3,6,7} P(f)の2元をとって和を考えてみました。これはcombination(4,3)通りあります。 (iii){0,1,2,4,5,6,8,9},{0,1,3,4,5,7,8,9},{0,2,4,6,7,8},{1,2,3,5,6,7,9} あと、本当は補集合や積を考える必要がありますが実際には必要ないですよね。 空集合とSと(i)、(ii)、(iii)であげたものの全体が求める集合体でしょうか? (3)関数g:s→Tを「g(x)={xを2にわった余り}と定義すると、gはF(P(f))-可測であるか否かを吟味せよ。 (1)や(2)の解釈が正しいとしてgの可測性は定義に従って実直にチェックすれば よいのでしょうか。それとももっと簡単な判定方法がある? うだうだと適当な内容でごめんなさい。

関連するQ&A

  • 関数の問題

    問題2 S=T={0,1,2,3,4,5,6,7,8,9}とし、関数f:S→Tを「f(x)={xを3で割った余り}」と定義する。例えば、f(5)=2, f(6)=0である。 (1) 関数fから生成されたSの分割P(f)を求めよ (2) 分割P(f)から生成される集合体F(P(f))を求めよ (3) 関数g:S→Tを「g(x)={xを2で割った余り}」と定義する。このとき、Sの分割P(f)とP(g)の上限と下限を求めよ。 宜しくお願いします。

  • 直積位相定義が2個の直積の場合に合致してるか?

    直積位相の定義についての質問です。 [定義ア]位相空間(X_λ,T_λ) (λ∈Λ(Λは任意の添数集合))と射影fが与えられていて,直積集合P:=ΠX_λとおく。 この時,X_λ⊃{f_λ^-1(t_λ)∈2^P;t_λ∈T_λ}=:S_λをf_λによって誘導される(X_λ,T_λ)の位相と呼ぶ。 次に和集合B:=∪S_λと置き, この時,このBから生成される位相{U∈2^P;∀x∈U,∃b∈B such that x∈b⊂U} を直積集合Pの直積位相と呼ぶ。 が直積位相の定義だと思います。 [定義イ]2個の直積(X_1,T_1)×(X_2,T_2)の場合の直積位相は{∪[g∈G]g ;G⊂T_1×T_2}と載ってました。 [定義ウ]集合Xの部分集合族Bが以下の条件を満たすときBをXの開基という (1)BはXを被覆する (2)任意のb1,b2∈Bおよび任意のx∈b1∩b2に対して、あるb∈Bが存在して、x∈b⊂b1∩b2となる。 [定義エ] Bを集合Xの開基とする時,{U∈2^X;∀x∈U,∃b∈B such that x∈b⊂U}をBによって生成される位相という。 そこで定義アの直積位相定義が2個の直積の場合に定義イと合致してるか調べています。 まずS_1={f_1^-1(t_1);t_1∈T_1},S_2={f_2^-1(t_2);t_2∈T_2}でB:=S_1∪S_2と置く。 そしてこのBによって生成される位相は{U∈2^(X_1×X_2);∀x∈U,∃b∈B such that x∈b⊂U}:=L これが{∪[g∈G]g;G⊂T_1×T_2}:=Mに一致してるか吟味してみます。 (i) L⊂Mを示す。 ∀U∈Lを採ると,∀x∈Uに対してx∈b⊂Uなるb∈Bが存在する。 Bの定義よりb={f_1^-1(t_1),f_2^-1(t_2)}という集合になっています。 そこで結局の所,Uは常にbを含んでいなければならない訳ですからU=∪[b∈B']b (但しB'⊂B)…(1)となっていますよね。 所でBの元達はというとB:=S_1∪S_2な訳ですから(1)は U={(t_1×x_2)∪(x_1×t_2);x_1⊂X_1,x_2⊂X_2}という形になってますよね。 ここでx_1やx_2は必ずしもT_1やT_2の元とは限らないわけですよね。 なのでこのUは∪[g∈G]g;G⊂T_1×T_2には含まれませんよね。 どうすればLとMが合致しますでしょうか? それとも直積位相は2個の直積集合の場合と3個以上の直積集合の場合とでのそれぞれ直積位相の概念は異なるのでしょうか?

  • 集合、写像

    集合と写像の問題で、 S=T={0,1,2,3,4,5,6,7,8,9}として、 f:S→T「f(x)={xを4で割った余り}」で定義する-たとえばf(5)=1,f(6)=2 場合、f(0)=0だと思うのですが、f(1),f(2),f(3)はどのように考えればよいのでしょうか? f(5)=1であることから、f(1)=f(2)=f(3)=空集合ということでよいのでしょうか? アドバイスをよろしくお願いします。

  • σ-加法族における関数の像について質問です。

    σ-加法族における関数の像について質問です。 ルベーグ積分の教科書において S,Tを集合、f:S→Tを関数、 P⊂2^S,Q⊂2^Tはともにσ-加法族 とするとき f^(-1)(Q)={f^(-1)(B)|B∈Q} f(P) ={B⊂T|f^(-1)(B)∈P} として左辺が定義されていました。 第1式の定義は形が自然ですが第2式はなぜこのような定義の形になるのでしょうか。 f(P)={f(A)|A∈P} では何か不都合が生まれるのでしょうか。

  • 加法群

    閉区間[0,1]で連続な関数全体の集合をS_0とすると、(f+g)(x)=f(x)+g(x)という関係で関数の和を定義すれば、S_0は加法群となることを示せ。なんですが、教えてください。お願いしますm(__)m

  • このような関数が可測関数である事の証明がわかりませ

    宜しくお願いいたします。 B(C)を複素数体C上のボレルσ集合体を表すものとします。 更にE,F∈B(C),p∈F,f:E×F→Cは(E\N)×Fで連続とし(Nは零集合),fはpで偏微分可能とします。 g:E→[0,+∞)をE∋∀x→g(x):=sup{|(f(x,y)-f(x,y_0))/(y-y_0)|∈R;y∈F}と定義します。 この時,gは可測関数である事を証明するにはどうすればいいでしょうか?

  • ルベーグ積分の質問です。

    (1)f,gをE∈Md上で0≦f≦gを満たす可測関数とするとき ∫_E f(x)dx ≦∫_E g(x)dxを示せ。 (2)f,gをE∈Md上でf≦gを満たす可積分関数とするとき ∫_E f(x)dx ≦∫_E g(x)dxを示せ。 これはどのように示せばいいのでしょうか? 定義から0≦s≦f(あるいはg)を満たす単関数を取って、 それのsupを取ったとしても常に不等式が成り立つかどうか、 少しわからないところがあります。

  • 合成積の式にフーリエ変換の関数を代入可能ですか?

    (f*g)(t) = ∫[-∞,∞] f(s) g(t-s) ds のf(s)とg(t-s)の部分にフーリエ変換の関数F(s)とG(k-s)を代入できますか? 定義を二つ書きます: ・フーリエ変換の式 F(k) = ∫[∞,-∞] f(t) exp^(-ikt) dt (式5.26) 関数F(k)は非周期関数f(t)のフーリエ変換と呼ばれ、(式5.26)はフーリエ変換を計算する式である。 ・合成積 区分的に滑らかで絶対可積分である2つの関数f(t), g(t)が与えられたとき、f(t)とg(t)の合成積(または、たたみこみ)を (f*g)(t) = ∫[∞,-∞] f(s) g(t-s) ds (式6.28) によって定義する。この式の左辺では、f*gが1つの関数の名前であることをはっきり示すために括弧で括ってあり、合成積はtの関数なので(t)と書いてある。 ・・・上記二つの式を踏まえて、 (F*G)(t) = ∫[∞,-∞] F(s) G(k-s) ds (式6.28)' と代入できますか?

  • {s_n}をf∈L^+(a,b)の定義関数列とする時,lim[n→∞]∫[a..b](f(x)-s_n(x))dx=0を示せ

    L^+(a,b) を区間(a,b)上の非負可積分関数全体の集合とする。 f∈L^+(a,b)に対し,定義関数列{s_n}が存在する。その時, lim[n→∞]∫[a..b](f(x)-s_n(x))dx=0を示せ。 (この∫は単関数のルベーグ積分) という問題なのですがどのように証明していいのか分かりません。 定義関数列の定義からs_1(x)≦s_2(x)≦…≦f(x) でs_n(x)はf(x)に近づいていくので0となる事は直観では分かるのですが…。 どのようにすればいいのでしょう?

  • 数学(微積分)の問題です。

    数学(微積分)の問題です。 2変数関数f=f(t,s)はR^2上定義されたC^1関数とすsる。 (1)F(t,x)=∫[0~x]f(t,s)dsは(t,x)のC^1関数であることを示せ。 (2)g(t)=∫[0~t]f(t,s)dsとおくと、g'(t)=f(t,t)+∫[0~t]ft(t,s)ds (ここでftはfのtでの偏微分) となることを示せ。 1は両辺微分?それで示せたことになりますか? 2は、微分してみましたがあまりうまくいきませんでした。 解答の過程を教えてください。 よろしくおねがいします。