• ベストアンサー
  • すぐに回答を!

高2の数学B 数列

高校2年生の数学Bで分からないところがあります。 数列の階差数列を習っているあたりです。 下の問題が考えてもさっぱり解き方が分からないので何方か教えていただけませんでしょうか? 問.次の数列の第K項をKの式で表し、初項から第n項までの和を求めよ。 1,1+2,1+2+2^2,1+2+^2+2^3,・・・・・・ ちなみに、答えは 第K項:2^K-1 和:2^n+1-n-2 です。 宜しくお願いします。

共感・応援の気持ちを伝えよう!

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.1
  • 4951snk
  • ベストアンサー率28% (155/547)

1,1+2,1+2+2^2,1+2+^2+2^3,・・・・・・ 第1項めは、1だけで2の何とか乗が加えられてませんよね。 第2項めは、1に、2の1乗が加えられています。 第3項めは、1に、2の1乗と2の2乗が加えられています。 第4項めは、1に、2の1乗と2の2乗と2の3乗が加えられています。 つまり、第k項めは、1+2^1+2^2+2^3+……+2^k-1 ここで、等比数列の公式Σ(k,n=1)r^(k-1)=1-r^n/1-rを使います。  答えは自分でどうぞ。  次に、和S=Σ(k,n=1){2^k-1}=Σ(k,n=1)2^k-Σ(k,n=1)1  あとは、ご自分で解けると思います。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

ご返答ありがとうございます。 考えているうちに頭の中がこんがらがってきてよく分からなくなっていました。 しかし、この説明のおかげでようやく納得することができました。 分かりやすいご説明ありがとうございました。

関連するQ&A

  • 高2の数学で数列がわかりません

    数学の問題です。 数列2/3,2/5.4/5,2/7,4/7,6/7,2/9,4/9,6/9,8/9,2/11・・・・・において (1)4/15はこの数列の第何項か。 (2)この数列の第100項の数は何か。 a1=4,an+1=3an+2^3(n=1,2,3,・・・・)で定めらた数列 {an}の一般項を求めよ。 次の数列の和を求めよ。 (1)1・n+2・(n-1)+3・(n-2)+・・・・・+n・1 (2)7+77+777+7777+・・・・・・+777・・・77 777+77はn個とする 次の和を求めよ。 (1)n Σ1/(2k-1)(2k+1) k=1 (2)n Σ1/k(k+1)(k+2) k=1 a1=5,an+1=2an-3n+4(n-1,2,3,・・・・・・)で定められた数列{an}の一般項を求めよ。 a1=1,a2=1,an+2-an+1-2an=0(n=1,2,3,・・・・・)で定められた数列{an}の一般項を求めよ。 数列{an}の初項から第n項までの和Snが3Sn=4an-3N-1(n=1,2,3,・・・・・)を満たすとき (1)初項a1を求めよ。 (2)一般項anおよび和Snを求めよ。 数列11,1001,100001,10000001,・・・・・について (1)この数列の一般項anを求めよ。 (2)この数列の項はすべて11の倍数であることを証明せよ。 宿題ですが数列が全くわかりません。どうかお願いいたします。

  • 数列です

    1,1+2,1+2+3,……,1+2+3+……+n,…… という数列があり、 (1)第k項をkの式で表せ。 (2)初項から第項までの和Snを求めよ。です (1)は普通に考えて連続する自然数の和 n/2(n+1)で解決したのですが…問題は(2)でして自分の回答を書くので間違えているところがあれば指摘をお願いします。 ※Σの正しい書き方がわからないのでここではΣの上の式をn-1で下の式をk=1として省略します。すいません まず1,1+2,1+2+3,……,1+2+3+……+n,……をAnとして Anの初項から第6項までを1,3,6,10,15,21と求めます。 次にSnの初項から第5項までを1,4,10,20,35と求め、 Snの階差数列Bnの初項から第4項までを3,6,10,15を求め、 さらにSnの第2階差数列Cnの初項から第3項までを3,4,5と求めることができます。 ここでCnの一般項{Cn}=k+2 Bn=B1+Σ(k+2)=n^2/2+3n/2+1 よってBnの一般項{Bn}=n^2/2+3n/2+1 したがって同様に{Sn}を求めます。 Sn=S1+Σ(k^2/2+3n/2+1)=n/6(n+1)(n+2)となります。 最終的な答えは合っているのですが途中経過が一切書かれてなく合っているか不安です。 あと、もっとスマートに解ける方法がありましたら是非教えていただきたいです。 お願いします。

  • 数学B 数列

    次の数列の第k項と、初項から第n項までの和をもとめよ。 (1)1*n , 3*(n-1) , 5*(n-2) , ・・・ , (2n-3)*2 , (2n-1)*1 この問題のやり方は分かります。 先生が説明した通りにやれば答えだけはでます。 しかし、理屈が分かりません。 初項にnがない、たとえば 2 , 2+4 , 2+4+6 , ・・・ の場合 第n項は、初項が2、末項2n、項数n の等差数列だから 一般項=n/2(2+2n) です。 これをシグマを使って計算します。 しかし、数列自体にnが入っていると 一般項であるn項を求めようとしても、うまくいきません。(初項がn、公差が-1だから、一般項=n+(n-1)*(-1)=1となってしまい、一般項でなくなってしまう) 先生の説明は 1*n や 3*(n-1) の*のところで切って、それぞれの一般項をかける。つまり、 *の左側は1 , 3 , 5・・・の初項が1、公差が2の数列だから、2k-1 *の右側はn , (n-1) , (n-2) ・・・の初項がn、公差が-1の数列だから、n-k+1 これらをかけて、(2k-1)(n-k+1) = -2k^2+2kn+3k-n-1 これが一般項(k項) これをシグマで計算すると、初項からn項までの和になる。 です。 この問題のkとかnとかの役割というか、文字自体の意味もよくわかりません。 kというのはn個ある項のうちの何項目かという意味ですか? なぜ一般項どうしをかけたら、数列の一般項になるのですか? 文章まとまってなくてすみません。 この問題の文字の意味から最後まで細かく説明をお願いします。 分からなかった部分は捕捉します。

  • 数学Bの数列の問題です。

    【問題】 等比数列{1,25,25^2,25^3,25^4,……}の初項から第n項までの和は,等比数列{1/3,2/3,3/3,4/3,5/3,……}の初項から第何項までの和に等しいか。nの式で答えよ。 [自分なりの解答] まず等比数列の一般項をan=25^(n-1)と表す。 次に等差数列の一般項をbm=(1/3)mと表す。 そして和の公式で それぞれSn(和),Sm(和)を出してイコールで結んでみたのですが…^^; できないんですよ^^; これでいいのか?という答えになってしまって…。 たぶんやり方が間違っているので 解き方を教えてください。 よろしくお願いします。

  • 数Bの数列

    今日も数Bをやっていて、分からない事が 多々あったので、教えて下さい。 (1)問 次の数列の第n項,および初項から    第n項までの和を求めよ。    (an)1,3,6,10,15,21,・・・・・・  (bn)2, 3, 4, 5, 6,・・・・・    bn = n+1 n>=2のとき    an=1 + Σ(k+1) =1 + 1/2(n-1)n + (n-1)  ここからどう計算したら良いのか分かりません  解答はan=1/2n(n+1)です。  その後の初項から第n項までの和は計算は  できましたので、説明はいらないです。 (2)問 次の数列の第n項を求めよ。    1, 1+2, 1+2+4, 1+2+4+8, ・・・・・・    第n項は 2(nの2乗)-1  となるんですが、どうすればそう  求められるんですか?  私は解答を見るまで全く見当がつきません。 (3)問  次の数列の第n項,および初項から     第n項までの和を求めよ。   0.9, 0.99, 0.999, 0.9999,・・・・・・   9(1/10+1/10<2乗>+1/10<3乗>+1/10<4乗>+・・・+1/10<n乗>) までは分かるんですが、次に  1-(1/10)<n乗> に何でなんでなるのかよく分かりません。 そのあとのΣの計算も分かりません・・・・。 3問もつらつらと並べてしまいましたが、 どれかひとつでも 教えて頂けると嬉しいです。 見にくいですが、宜しくお願いいます。

  • 数列の問題なんですが…

    「初項から第n項までの和S_nが、S_n=n^2-3n+1で与えられる数列の一般項a_nを求めよ」という問題なのですが、ノートに書いてある解き方は、S_n-S_(n-1)をしてa_nを求める、というものなんです。そしてそのa_nは2n-4(n>=2)となっているんです。 n>=2となっているということは、n=1はなりたたないんですよね。ということはこの数列の初項は一体いくつなんでしょうか…? 求め方を見てる限り階差数列…?とも思ったんですが、そこからどうにも考えが及びません。階差数列でも初項はn=1ですよね…。 宜しくお願いします。

  • 数列

    自然数nがn^2個ずつ続く数列 1,2,2,2,2,3,3,3,3,3,3,3,3,3,4…… において、第400項を求める。 また、初項から第400項までの項の和を求める。 1/6(N-1)N("N-1)<400≦1/6N(N+1)(2N+1) N=11となることは流れで理解できたのですが 初項から第400項までの項の和を求める方法がわかりません。 Sk=K^3なのですか? 問題は2乗なのに、求める式は3乗なのですか? Σ(k=1~10)k^3 + 11×15 式の11×15は理解でしたが k^3の由来が でもこれは第1群から第10群までの和なんですよね。  

  • 数学Bの問題(数列)を教えて下さい。

    ・m=nではないとする。ある等差数列の第m項がm2乗、第n項がn2乗であるとき、第(m+n)項を求めよ。 ・数列(an)の初項から第n項までの和SnがSn=n-2anで表わされるとき、anをnの式で表せ。 息子の数学の問題です。 分かる方お教え下さい。 お願いします。

  • 数学「種々の数列」の問題を教えてください。

    初項から第n項までの和Sn=n(n+1)(n+2)で与えられている数列{An}があります。 (1)一般項Anを求めてください。(途中式もお願いします。)  (2)Σ[k=1,n](1/Ak)を求めてください。(途中式もお願いします。)  ちなみに答えは、 (1)An=3n(n+1) (2)n/{3(n+1)} です。よろしくお願いします。

  • 数列

    種々の数列 初項から第n項までの和を求めよ (1)ak=2/4k^2 (-1) (2) ak=k2^(k+2) です 考え方か途中式をを教えてください ちなみに答えは(1)が 2n/2n+1 (2)が(n-1)・2^(n+3)+8です です お願いします