• ベストアンサー
  • すぐに回答を!

正規分布(1)

以下の問題を解いてみました。回答があってるかどうか見ていただければ幸いです。(少し長いので二つスレをたてるかもしれません。) 問題:500ppmと550ppmの間である種は開花します。種の開花は正規分布に従い平均が525ppm, 標準偏差が15ppmです。 (1) 種が開花する確率を求めよ。 P(-1.667<Z<1.667)=0.9525-(1-0.9525)=0.905、Z~N(0,1) (2)4つの種のうち全部が開花する確立を求めよ。 P=(0.905)^4=0.671 (3)4つの種のうち3つだけが開花する確率を求めよ。 P=4C3*(0.905)^3*(0.095)=0.282 (4)今20個の種があります。これらは平均500ppm,標準偏差20ppmの正規分布に従います。 この20個から4つを取り出して、その中の3つが開花する確率を求めよ。 P(0<Z<2.5)=0.99379-0.500=0.4379 よって求める確率は、P=4C3*(0.4379)^3*(0.5621)=0.189 とくに(4)に関してあまり自信がありません。

共感・応援の気持ちを伝えよう!

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.1

ppmっていうのがなんだかわかりませんが、多分、種のある特徴を表すパラメータかなんでしょうか。 4はあいまいな(題意がよくわからない)問題ですね。 1)平均が500ppm,標準偏差が20ppmの母集団から標本を20個取り出してきた。 2)20個の種の(標本)平均が500ppm、(標本)標準偏差20ppm のどちらなんでしょうかね。 1)だと思うと、michealjaggerの答えであっているとは思いますが、これだと単に母集団から直接4個の種を取り出してきたことと同じなんで、20個という数字に意味がないことになってしまいます。 2)のほうが問題の日本語としてはしっくりくるのですが、こっちの解釈は、(有限な)20個の種が「正規分布」に従うってことはありえないという致命的な 欠陥があります。「正規分布」って言葉がなければ(単に平均500ppm、標準偏差20ppmってだけ書いてあるだけなら)こっちの解釈が正しいと思うのですが。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

有難うございます。4で、20が意味を持たないと思っていて、rabbit catサンもそうおっしゃられているんで、少し安心しました。有難うございます。

関連するQ&A

  • 確率 正規分布

    確率 正規分布 確率変数Xが正規分布N(5,2^2)に従う (1)P(6<=X<=9) (2)P(3<=X<=8) (3)P(X<=10) を求めよ という問題があるのですが、標準化変換のところがイマイチわかりません 調べたら 6=m+a 9=m+2a(mは平均、aを標準偏差としたとき) とかいてあるのですがそこからなぜ標準化変換したらP(0.5<=Z<=2)になるのかわかりません どなたかよろしくお願いします

  • 正規分布表 確率のけいさんについて

    正規分布の確率の求め方について 正規分布表から次の確率を求めろという問題なんですがあってますか?? p(z>1.05) =0.1469 p(z>-0.75)=0.2734 p(z<-2.00)=0.4772 p(z<1.96)=0.0250 であってますか?? (2) 平均が70で、標準偏差が20の母集団の正規分布の形態がある。 75より大きい標本平均を得るそれぞれの確率を求めよ。 1、無作為標本の個数が25のとき 2、無作為標本の個数が400のとき 計算のしかたなんですけど、 1の場合 (75-70)=2 2/20√25 ですか?? よく分からないので詳しく教えて頂きたいです。。。 よろしくお願いします><

  • 確立・統計の問題です。(正規分布)

    確立・統計の問題です。 (1)ある確立変数が標準偏差σ=21.5の正規分布に従うものとする。 この確立変数が120.5未満のある値をとる確立が90%であるとき、この分布の平均値をもとめよ。 (2)ある検問所で記録されたスピードのデータによると、そこを通過する車は平均時速60.5km、標準偏差7.4kmで、大体正規分布に従っている。 このとき (a)時速70kmを超えている車は全体の何%か (b)時速48kmよりも遅い車は全体の何%か (c)時速56kmから時速64kmまでの車は全体の何%か (3)ある商品の1ヶ月の売り上げ個数は、平均250個、標準偏差30個の正規分布をする。 90%の確立で品切れをおこさないようにするためには、月初めにどれだけの在庫を準備しておけばよいか。 ただし、各月の需要はすべてつき始めの在庫で満たすものとする。 (1)は答えが P{(120.5-μ)/21.5<z}=0.9 z=1.28であるからμ=92.98 と回答にあるのですが、zがどうしてそうなるのかがわかりません。21.5<zとなるのもどうしてでしょうか? zがわかったと仮定してμを計算すると、そっちは出るのですが・・・。 (2)は答えが(a)10% (b)4.6% (c)41.0%とあるだけで どうやって導いたらいいのかいまいち検討がつきませんでした。 比較的簡単にでそうな感じの問題だとは思うのですが。 (3)は250+1.28×30=288個と回答にありましたが、 1.28はどうやって出したのかがわかりません。 それになぜ標準偏差の30をかけるのでしょうか? よろしくお願いします。

  • 正規分布の問題

    こんばんは。 正規分布の問題ですが、最近統計学を学び始めたので、全く理解できません。 どなたかご教示よろしくお願い致します。 解法を教えて頂けると助かりますが、お手数でしたらプロセスだけでもお願い致します。 問題  サイコロを42000回投げて出た目の総和がある値以上となる確立を0.002以下としたい。この値の最小値はおよそいくらか。  ただし、目の出る確率は1/6ですべて等しく、何回目にどの目が出るかは互いに独立な事象である。  なお、確立変数Zの平均E(Z),分散V(Z)が存在するとき、関係式 V(Z)=E(Z^2)-E(Z)^2 が成り立つ  また、{Xi} (i=1,2,..,n) が互いに独立かつ同一の確率分布に従う確率変数列で、E(Xi), V(Xi)が有限ならば、nが十分大きいとき、Y=ΣXiは近似的に正規分布に従うとみなせる。  さらに確立変数Yが正規分布に従うならば、(Y-E(Y))/√(V(X))は標準正規分布に従い、標準正規分布の確立密度関数,  f(x)=1/√(2π)・e^-x^2/2 に対し、  ∫f(x)dx=0.002 (x; 2.88~+∞) とする。 解は148000です。よろしくお願い致します。

  • 正規分布

    正規分布に関する問題です。 ある中学校の男子の身長の平均は163.0cm、標準偏差8cmの正規分布に従う。このとき男子2人を無作為に選ぶとき、2人の身長の差が5cmを超える確率を求めよ。 2人を比べるというと分布表の使い方がわからなくなってしまいました。誰か解き方を教えてください。

  • 正規分布 性質

    あるXに対して、確率変数Yは正規分布 平均値=2X+1 標準偏差σ=1 グラフから見ると平均値の集合は直線です。聞きたいのは、これらの正規分布を合わせて、一つの何かの分布になりませんか

  • 情報処理技術者試験 標準正規分布表

    過去の問題で、どうしても理解できない問題があります。 わかる方、教えてください! 【問】 ある工場で製造している部品の長さの誤差は、平均0mm、標準偏差0.5mmの正規分布に 従っている。誤差の許容範囲が±1mmのとき、不良品の発生率は何%になるか。 標準正規分布法を用いて最も近い値を選べ。 「標準正規分布表」 確立変数  分布関数値  確立密度関数値 0.00-------0.5000-------0.3938 0.50-------0.6915-------0.3521 1.00-------0.8413-------0.2420 1.50-------0.9332-------0.1296 2.00-------0.9773-------0.0540 2.50-------0.9938-------0.0175 3.00-------0.9987-------0.0044 3.50-------0.9998-------0.0009 ア.2.3 イ.4.5 ウ.5.4 エ.15.9 答えは、(1-0.9773)×2×100=4.54% より「イ」 →何故ここで(1-0.9773)となるのでしょうか。 答えの説明では~ U =(許容範囲-平均)÷標準偏差 = 1-0(mm)÷0.5 = 2 「標準正規分布表」より、確率変数2の分布関数値を読み取ると、 0.9773となります。 これは、標準正規分布の半分で、0.5(50%)になりますので、 ±の両方で2倍します。 (1-0.9773)×2×100=4.54% ~以下類似問題でとき方が違うのは?~ ある製品の質量が平均100gで、標準偏差5gの正規分布に従う場合、 ±10gの誤差を超えるものを不良品とすると、不良品の確立は何%か。 U P 0.0 0.500 0.5 0.309 1.0 0.159 1.5 0.067 2.0 0.023 2.5 0.006 上記の場合、 規格品の範囲は、100±10gなので、90~110gとなります。 110gを元に標準化すると、 U=(110-100)÷5=2.0 となり、標準正規ぷんぷ表のU=2.0のPを読み取ると 0.023であり、左右対称であることから2倍します。 0.023×2=0.046 ** お願いします。

  • 統計学 正規分布 回答の手引きおしえてください。 

    今、文系の大学二年です。 今、初歩的な統計学を学んでいるのですが、どうしてもわからないので、ヒントでもおしえてください。 問題 (1)平均0、標準偏差1の正規分布で、0≦x≦1 である確率 (2)平均20、標準偏差5の正規分布で、-a≦x≦aである確率が95.4%である時、aの値 いろいろネットで調べてみましたが、さっぱりです。よろしくお願いします。

  • 正規分布や確立についての問題です。

    大学の授業でやったものなのですが・・・・ 問1 ある株式の収益率x(単位%)が平均2%、標準偏差8%である正規分布にしたがうとき、得をする(x>=0)確立を求めよ。 問2 確立変数xが二項分布B(15、0.3)に従うとする。 2<X<4となる確立を計算せよ。 この問題を教えていただけないでしょうか? いろいろ調べてみたのですが・・・ 正規分布という単語がでるだけでちんぷんかんぷんなんですorz

  • P(|Z|>c)を満たすcの値を標準正規分布表から

    統計学入門の問題を解いていますが、答えが載っていないので困っています。 確率変数Zが標準正規分布に従うとき、数表から、  条件P(|Z|>c)=0.01, 0.02, 0.05, 0.10 をみたすcの値を求めよ。また、  条件P(Z>c)=0.01, 0.02, 0.05, 0.10 に対してはどうか。 数表は https://ai-trend.jp/basic-study/normal-distribution/table/ のような「上側確率の」標準正規分布表になっています。 自分で解いてみると: 両側 P(|Z|>c) 0.01:正規分布表で0.02のところ:2.05 0.02:正規分布表で0.04のところ:1.75 0.05:正規分布表で0.10のところ:1.28 0.10:正規分布表で0.20のところ:0.84 片側 P(Z>c) 0.01:正規分布表で0.01のところ:2.32 0.02:正規分布表で0.02のところ:2.05 0.05:正規分布表で0.05のところ:1.64 0.10:正規分布表で0.10のところ:1.28 ・・・で合っていますか? もし間違っている場合は、両側と片側のそれぞれ0.01の計算方法だけ教えて下さい。