• ベストアンサー

教えて下さい

y=-cosx (0<=x<=π)をy軸の周りに一回転した時にできる容器に、y軸を鉛直にして毎秒acm^3 の割合で水を入れる (1)水面の半径がx(0<=x<=π)となったときの体積V(x)は V(x)=π*∫(0~π) x^2 sinx dx で表されることを示せ (2)V(x)を計算せよ (3)水面の半径xの増加する速度をxで表せ という問題がどうすればいいのか分かりません。教えて下さい。(2)は、普通に積分する以外に何かしなくてはならないことが有るのでしょうか?

質問者が選んだベストアンサー

  • ベストアンサー
  • siegmund
  • ベストアンサー率64% (701/1090)
回答No.2

え~と,どうしたらいいかな. (1) dV = πx^2 sin x dx の両辺を積分したと考える. 積分の下限は x=0 のとき V=0 になるように(題意からそうですよね) 選んでいる. (2) dV/dx = πx^2 sin x, つまり,V を x で微分したものが πx^2 sin x だから, もとの V に戻すには積分すればよい. 積分の下限については(1)と同様の考え. (1)(2)のどちらかでどうですか. それから V(x) = π ∫(0~x) x^2 sin x dx の積分範囲の上限の x と被積分関数の x とは別物だというのは 大丈夫ですよね.

j_takoyaking-man
質問者

お礼

ありがとうございました。一応(2)でいってみます。

その他の回答 (1)

  • siegmund
  • ベストアンサー率64% (701/1090)
回答No.1

V(x)=π*∫(0~π) x^2 sin x dx ではなくて V(x)=π*∫(0~x) x^2 sin x dx ですね. もとのままだと,x に関係なくなっちゃいますよ. (1)は積分の基本です. 【細かく分けておいて足し合わせる】 面積でも何でも同じ思想です. 半径が x~x+dx の部分の体積 dV を考えればいいのです. dx は小さいから円板と見てさしつかえありません. 半径はもちろん x, 厚さは {-cos(x+dx) + cos x} = sin x dx したがって, dV = πx^2 sin x dx です. 考え方は面積でもなんでも同じですから,必ずマスターしてください. と言ったって,何も難しいところはありませんよね. dV がわかったから,半径が x のときは V(x) = π ∫(0~x) x^2 sin x dx です. (2)は普通に部分積分でしょう. (3)は dx/dt = (dx/dV)(dV/dt) で,題意から dV/dt = a ですね. dx/dV = 1/(dV/dx) は大丈夫ですよね. あとはお任せします.

j_takoyaking-man
質問者

補足

0~xです。失礼しました。 どうやってdV = πx^2 sin x dx から V(x) = π ∫(0~x) x^2 sin x dx になったのかよく分かりません。教えていただけないでしょうか?

関連するQ&A

  • 数学III 微分の応用

    y=x^2/2とy=a(>0)で囲まれた図形をy軸まわりに回転してできる立体を容器と考える。このとき、x軸は水面上にあり、y軸は水平面に垂直とする。 毎秒体積vの水を注ぐ。ただしvは定数。以下の値をv,aを用いて表せ。 水面の高さがa/2に達するのは何秒後か。またその時の水面の半径r,高さhの増加する速さ、半径の増加する速さを求めよ。 よろしくお願いします。

  • 体積(積分)

    Y=√3sinx-cosx(π/6≦x≦7π/6) のグラフとx軸で囲まれた部分をx軸の周りに1回転してできる立方体の体積をVとするとV=? V=π∫(Y^2)dx =4π∫sin^2(x-π/6)dx =4π∫1-cos(2x-π/3)/2dx =2π^2 について、できるだけ詳細の途中式の計算を教えてくれませんか? おねがいします

  • 積分

    Y=√3sinx-cosx(π/6≦x≦7π/6) のグラフとx軸で囲まれた部分をx軸の周りに1回転してできる立方体の体積をVとするとV=? 被積分関数を三角関数の合成を利用して解くそうですが、難しくてよくわかりません。 いろいろと悩んだのですが 解き方がわかりません πy^2を積分すると sin^2(x-π/6)になって さらに積分すると 1-cos(2x-π/3)/2から2π^2になるのがさっぱりわかりません

  • 体積

    Y=√3sinx-cosx(π/6≦x≦7π/6) のグラフとx軸で囲まれた部分をx軸の周りに1回転してできる立方体の体積をVとするとV=? 被積分関数を三角関数の合成を利用して解くそうですが、難しくてよくわかりません。 数(3)の範囲を読んだのですが難しくて困っています。 私に教えてくれる人はいませんか? すいません

  • 数学IIIの問題

    定積分の応用問題で面積を求められません。助けてください。解説もお願いします (1) 2曲線y=sinx, y=cosx (-3Π/4≦x≦Π/4)で囲まれた図形の面積S (2) 曲線2x+(1/x)-3とx軸で囲まれた部分の面積S (3) 曲線y=x√x の0≦x≦1の部分の長さL (4) 曲線y=2/(2+x) とx軸、y軸および直線x=2とで囲まれた図形を、x軸の周りに1回転してできる立体の体積V (5) 半径r{x=rcost, y=rsint の円(0≦t≦2Π)の周りの長さL

  • 累次積分について

    2本の半径aの直円柱が、その軸が直行するように交わるとき、その共有部分の体積Vを求めよ。 という問題ですがまず、領域D={(x,y)|x≧0,y≧0,0≦y≦x≦a}をf(x,y)=(a^2-x^2)^(1/2)として、この体積を16倍すれば体積Vが求められると考えたのですが、 (1)∫[0→a]{∫[y→a](a^2-x^2)^(1/2)dx}dyで積分する方法 (2)∫[0→a]{∫[0→x](a^2-x^2)^(1/2)dy}dxで積分する方法 で考えたのですが、(1)と(2)では答えが違いました。どちらが正しいのでしょうか?それとなぜ、間違っているほうでは正しい解答が得られないのかもどなたか教えていただけないでしょうか?

  • 不定積分 部分積分

    ∫(3x+2)sinx dx =∫{(sinx)×(3x+2)} dx =(-cosx)×(3x+2)-∫{(-cosx)×3}dx =-(3x+2)cosx-3∫-cosx dx =-(3x+2)cosx+3∫cosx dx =-(3x+2)cosx+3sinx or =(3x+2)(-cosx)-∫(3x+2)'(-cosx)dx =-(3x+2)cosx+3∫cosx dx =-(3x+2)cosx+3sinx この2つのやり方どちらで部分積分で解答した方がいいんですか? また、他の部分積分の時にはどちらのやりかたでやったほうがいいですか?

  • 積分

    微分方程式を解く過程で  C(x) = ∫(sinx)(cosx)*e^(sinx)dx を解くことになったのですが、これは解けるのでしょうか?  ∫(cosx)e^(sinx)dx なら =e^(sinx) と解けるのですが。 ちなみにそもそもの問題は   y' + (cosx)y = (sinx )(cosx) で、定数変化法を使って解き、まず右辺=0の解が   y = Ce^(-sinx) :Cは積分定数 と求まったので、C=C(x)として最初の式に代入して今回質問した積分がでてきました。 よろしくお願いします。

  • 体積

    曲線y=sinx(0≦x≦π)とx軸とで囲まれた図形をx軸まわりに1回転してできる立体の体積を求める問題 1回転すると楕円形みたいな形になりますが。 どうやって体積を求めるのでしょうか? V=∫π(y^2)dxというしきになるのが分かりません。

  • 数学の積分の問題を詳しく教えてください。

    数学の積分の問題です。どうしても分からないところがあるため、解説をお願いします。 問題:関数y=f(x)がf'(x)=-sinx, f(0)=2, f(π)=0を満足するとき、次の問いに答えよ。 (1) f(x)を求めよ。 (2) 0≦x≦πの範囲でx軸と曲線y=f(x)にはさまれる部分の面積Sを求めよ。 (3) (2)の図形をx軸、y軸のまわりに回転してできる立体の体積をそれぞれV1,V2とするとき、V1およびV2を求めよ。 (1)、(2)、(3)のV1を求めるところまでははなんとか分かったのですが、(3)のV2を求めることがどうしてもわかりません。 解答のみ分かっています。 (1)f(x)=cosx+1 (2)π (3)V1=3/2*π^2, V2=π^3-4*π 詳しい解説を頂きたいです。よろしくお願いいたします。