• ベストアンサー
  • 困ってます

波動方程式

波動方程式のそれぞれの辺は時間に関する微分と 空間に関する微分なのですがそれがなぜイコールになるのでしょうか?

共感・応援の気持ちを伝えよう!

  • 物理学
  • 回答数1
  • 閲覧数121
  • ありがとう数2

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.1
  • sanori
  • ベストアンサー率48% (5664/11798)

こんなイメージでどうですか? 波がx方向に速度vで進行しています。 あなた(若しくは波の振幅または位相を検出する機器)が、波の進行と同じくx方向に速度vで追いかけていきます。 すると、 いつまでたっても、波の高さ(位相)は変わりませんよね? これは、 時間ゼロにおけるゼロ地点の位相と、t秒後のx地点の位相とが一致している、ということです。 つまり、それは、 「時間がt秒経過した」 のと、 「位置がxずれたこと」 とは同じであることを意味します。 さらに、それは、どの位相においても、成り立ちます。 (つまり、追いかけ始めるスタートが、ちょっと遅かったり速かったりして、ずれても、追いかけ始めてからは同じ現象が起こります。)

共感・感謝の気持ちを伝えよう!

質問者からのお礼

どうもありがとうございました.参考にさせていただきます.

関連するQ&A

  • 波動方程式

    以下の問題について質問します。 波動方程式∂^2φ/∂t^2=∂^2φ/∂x^2の解で初期条件φ(x,0)=exp(-x^2) φt(x,0)=-xexp(-x^2)を満たすものを求めよ。 与えられた方程式(波動方程式)と初期条件を、それぞれ x についてフーリエ変換する。そうすると t に関して二階の常微分方程式が得られるので、それを解く。最後に、得られた解を x について逆フーリエ変換すれば答が得られるとのことですが初めの方程式(波動方程式)と初期条件を、それぞれ x についてフーリエ変換するという所から躓いています。どなたか途中の計算過程を教えていただけないでしょうか。

  • 波動方程式について

    現在波動方程式についての勉強をしています。 授業では d^2u(x,t)/dt^2=E/P*d^2u(x,t)/dx^2 (Eはヤング率、Pは物体の密度) という式で教わっているのですが、ネット「波動方程式」と検索してもこのような式で書いているところは一つもなく、もっとややこしい複雑な式を書いているサイトばかりでした。 はたしてこの数式も波動方程式と言うのでしょうか? そして方程式というからには何かしら解というものがあると思うのですが、この波動方程式の解はいったい何なんでしょうか? 解説よろしくお願いします。

  • 波動方程式の起源について教えて下さい。

    量子力学のシュレティンガー方程式や流体力学の波動方程式などでは 波を記述する方程式として当たり前のように二階微分の式が現れますが、 波を記述するためにこのような式で表されるというのに、導出や証明はあるのでしょうか? いくつか書籍を見てみたのですが、当たり前のように出てきていて、なぜこのような式で表されるのかについて言及してある本が見つかりませんでした。 どなたか解説してある書籍などありましたら教えて下さい。

  • 2次元の波動方程式の導出について

    2次元空間における波動方程式の導出の手順なんですけど、膜を考えるのではなく、2次元の弾性体をモデルとして導出することはできないのでしょうか? 1次元の波動方程式を導出する時は1次元の弾性体をモデルとしたものがあったので気になりました。

  • 波動方程式の解

    電磁界の平面波に関する問題で偏微分方程式を 解く必要がでてきたので質問させていただきたいのですが、 ∂^2Ex/∂z^2=εμ∂^2Ex/∂t^2 の波動方程式の解は未定係数法により Ex=Ae^{jωt}e^{jβz}とおいて解くと、 β=ω√(εμ)とし、Ex=Ae^{jβz}となりますが、 これから、もう1つの偏微分方程式 -∂Hy/∂z=ε∂Ex/∂tから、Hyを求めたいのですが、 この偏微分方程式はどのように解いたらいいのでしょうか?答えは、(ω/β)εExとなるそうですが、途中の過程が 分からなくて・・・。 また、最初の偏微分方程式において解の形をA,βを未知数として、Ex=Ae^{jωt}e^{jβz}とおく未定係数法以外の方法で解く手段はあるのでしょうか? よろしければ回答お願いいたします。

  • 波動方程式の導出で、偏微分の等式のところがどう変形したのかよくわかりま

    波動方程式の導出で、偏微分の等式のところがどう変形したのかよくわかりません。 どうなっているのでしょうか?画像の部分です

  • 波動方程式について教えてください。

    波について研究しているのですが、ガウス関数や、波動方程式 がよく分からないので、簡単に教えてください。

  • 波動方程式

    波動方程式で同軸ケーブルの境界条件ってどう表せば良いんでしょうか?

  • 波動方程式

    波動方程式のトンネル効果に関する説明や問題が載ってるサイトとかってないでしょうか お願いします

  • 波動方程式の解法

    偏微分方程式の本にはラプラス方程式の解法として  変数分離法  Green関数法  変分法  アプリオリ評価法  境界上の積分方程式に帰着する方法  ペロンの方法  複素関数的方法 の七つが挙げられていました。これをダランベールの波動方程式  (∂^2/∂t^2 - ∇^2)φ=0 にあてはめて考えると、変数分離法、Green関数法、変分法は共通して使えます。双曲型方程式には特性曲線による方法があります。ファインマンの経路積分法もあると思います。双曲型方程式の場合、アプリオリ評価法、境界上の積分方程式に帰着する方法、ペロンの方法に相当するようなものはないのでしょうか。また、複素関数的方法は解析関数の実部と虚部が調和関数になることを使うため、波動方程式に使うことは難しいと思いますが、全く不可能でしょうか。