緩増加超関数について

このQ&Aのポイント
  • 緩増加超関数とは、急減少関数全体の上で定義される線形写像のことです。
  • 緩増加超関数は連続であり、収束する関数列に対しても収束する性質を持ちます。
  • デルタ関数は緩増加超関数の一例であり、積分の中でもよく出てきます。しかし、デルタ関数には測度0上で値をとる特性があり、実際には普通の関数とは異なる扱い方がされています。なぜこのような書き方がされるのか、詳細は不明です。
回答を見る
  • ベストアンサー

緩増加超関数について

定義 Tが緩増加超関数であるとは、 1.TはS上の線形写像、ただしSは急減少関数全体とします 2.Tは連続、i.e.任意のφ,φn∈Sに対してφn→φならT(φn)→T(φ) 2の定義中にあるφn→φ(n→∞)の意味なんですが これはSにある位相をいれてあってその位相に関して収束するという意味です ここではその位相の紹介は省きます またT(φ)のことを<T,φ>と書きます 例 δ関数を次のように定義するとδ関数は緩増加超関数です <δ,φ>=φ(0)、φ∈S 証明は定義の1,2を確かめればいいので省きます ここからが本題なのですが このデルタ関数が積分の中にでてくるのをよく見ます たとえば ∫(-∞~∞)dx・∫(-∞~∞)dy・p(x)・p(y)・δ(z-x/y) などです。 このδ関数はz-x/yに作用しているのですが これは上の定義のようなS上の関数にはなっていません あたかも普通の関数のように扱われています しかし、普通の関数としたら (今pは連続分布という仮定があります) この測度0上で値をとる関数なのでこの積分は0になるはずです ではどうしてこのように混同して書かれているのでしょうか? ぜひ教えてください

質問者が選んだベストアンサー

  • ベストアンサー
  • motsuan
  • ベストアンサー率40% (54/135)
回答No.1

問題の趣旨を良く理解していないのですが、 http://oshiete1.goo.ne.jp/kotaeru.php3?q=212617で ∫(-∞~∞)dx・∫(-∞~∞)dy・p(x)・p(y)・δ(z-x/y)を書いた人なので。 書いたときの気分としては完全に関数です。 でも、hismixの定義によれば 写像δはz-x/yに作用するのではなくて p(x)やp(y)に作用するのではないでしょうか? 関数の変数のように書かれているz-x/yは単なる写像のパラメータと解釈すればいいと思いますが、 関数のように書いたほうが写像が単なる積分に見えて気分がよろしい(微分もできるしね) というような事情なのではないでしょうか? (実際は歴史的な経緯でこうなっていると思いますが  敢えて言えばこんな感じかなと思って書きました。)

hismix
質問者

お礼

返信遅れましたすいません >p(x)やp(y)に作用するのではないでしょうか と言われてそういわれればそうでした! この場合 <δ,φ>:=int(all)δφdt のような感じになっているんですね そう考えれば一応”hismixの定義”(笑)でも解釈できます なんとなくわかったし、まあ後は時間が解決してくれると思います 精進しまーす どうもありがとうございました

その他の回答 (1)

  • motsuan
  • ベストアンサー率40% (54/135)
回答No.2

あとδ(z-x/y)はδ(yz-x)としたほうが良かったかも知れません。 と反省しています。 「hismixの定義によれば」ではなくて「hismixさんの定義によれば」でした。 失礼しました(カット&ペーストの恐ろしさ)。

関連するQ&A

  • 連続写像r:X→Aならrは商写像となる事を示せ

    下記の問題で質問です。 (1) Let p:X→Y be a continuous map. Show that if there is a continuous map f:X→Y such that pf equals the identity map of Y,then p is a quotient map. (2) If A⊂X,a retraction of X onto A is a continuous map r:X→A such that r(a)=a for each a∈A. Show that a retraction is a quotient map. (1) p:X→Yを連続写像とせよ。もし合成写像pfがYの恒等写像になるような連続写像f:Y→Xが存在するならpは商写像である事を示せ。 (2) もしA⊂XならXからAへの上へのretraction(引き込み,左逆写像)は∀a∈Aに対してr(a)=aとなる連続写像r:X→Aならrは商写像となる事を示せ。 (1)については f=p^-1の関係になっていてpもp^-1も連続で全単射と言ってあるのだから ∀p^-1(s)∈T(TはXの位相)⇔s∈S(SはYの位相)が言えるから pは商写像。 で正解でしょうか? (2)については 引き込みの定義はf:X→YでB⊂YでBがf(X)の部分集合でない時の逆像f^-1(B)をfによるBの引き戻しとか言ったりするのだと思います。 rはontoと言っているので全射と分かる。 Aの位相として相対位相T_a:={A∩t∈2^X;t∈T} (但しTはXの位相)が取れる。 そこでr^-1(s)∈T⇔s∈T_aを示す。 s∈T_a⇒r^-1(s)∈Tはrが連続である事から直ちに言える。 r^-1(s)∈T⇒s∈T_aである事は r^-1(s)∈T…(2)を採るとs=r(r^-1(s))(∵rは全射)=r^-1(s) (もしr^-1(s)⊂Aなら) …(3) (∵rの定義) ∈T_a (∵(2),(3)と相対位相の定義) しかしr^-1(s)がAに含まれていない場合はこのsは何ともいえません。 どうすればこの場合もs∈T_aが導けますでしょうか?

  • 連続関数の定義に関して(位相空間)

    「定義 (X、O_X)、(Y、O_Y)を位相空間とする。写像f:X→Yが連続であるとは、U \in O_Y→f~(-1)(U)\in X を満たすことである。(ただし、A\in Bは、AがBに含まれているという意味とする)」 と”連続”の定義が位相空間論の本には載っていて、この定義がε-δ論法での連続の定義と同じであることが一般に言われていますが、どうして位相空間論における連続の定義では、f^(-1)の存在を特に何の指定もなく認めてしまっていいのか、その辺りがよくわかりません。もしもわかっている方がいらっしゃれば、お教えいただけないでしょうか?

  • 位相と連続の証明問題で質問です。

    識者の皆様よろしくお願い致します。下記の問題について質問です。 Let A be a set;let {X_α}_α∈J be an indexed family of spaces;and let {f_α}_α∈J be an indexed family of functions f_α:A→X_α. (1) Show there is a unique coarsest topology T on A relative to which each of the fuctions f_α is continuous. (2) Let S_β:={f_β^-1(U_β); U_β is open in X_β},and let S=∪S_β. Show that S is a subbasis for T. (3) Show that a map g:Y→A is continuous relative to T if and only if each composite map f_α。g is continuous. (4) Let f:A→ΠX_α be defined by the equation f(a)=(f_α(a))_α∈J ;let Z denote the subapace f(A) of the product space ΠX_α.Show that the image under f of each element of T is an open set of Z. 「Aを集合とし,{X_α}_α∈Jを添数付けられた(位相?)空間の族とし,{f_α}_α∈Jを添数付けられた写像f_α:A→X_αの族とせよ。 (1) 各f_αが連続となる事に関連したA上の最強位相Tが一意的に存在する事を示せ。 (2) S_β:={f_β^-1(U_β);U_βはXでの開集合},そしてS=∪S_β…(*)とする時,SはTの準開基となる事を示せ。 (3) 写像g:Y→AがTに関して連続⇔各合成写像f_α。gは連続。 (4) f:A→ΠX_αをf(a)=(f_α(a))_α∈J; Zは直積空間ΠX_αのf(A)の部分空間を表す。Tの各元のfの像はZの開集合になる事を示せ。」 (1)については各f_αが連続だというのだから∀t_α∈T_α(但しT_αはX_αの位相),f_α^-1(t_α)はAの開集合(…という事はAは何らかの位相を持っている?その位相をTとしておく)。f_α^-1(T_α)⊂Tになっていなければならない(∵連続の定義)。 よってT=∪[α∈J]{f_α^-1(t_α)∈2^A;t_α∈T_α}…(ア)と書け、TはAの最強の位相だというのだからAの任意の位相は全てTより弱い。 よってTは離散位相にならねばならない? それでT=2^Aを示せばいいのかと思いました。T⊂2^Aは明らかなのでT⊃2^Aを示します。 ∀G∈2^Aを採ると、、、ここからどのように書けますでしょうか? (2)については今,S=∪[β∈J]S_β={s∈2^A;∃β∈J such that s∈S_β}…(**)となっていて, ∪[s∈S]s=Tとなる事を示せばよい(∵準開基の定義)。 ∪[s∈S]s⊂Tを示す。 ∀s∈Sを採ると(*)より,∃β∈J;s=f_β^-1(U_β).よってこれは(1)でのTの元になっているのでs∈T. ∪[s∈S]s⊃Tを示す。 ∀t∈Tを採ると∃β∈J;t=f_β^-1(t_β) (但し,t_β∈T_β)(∵(ア)) よってS_βの定義(S_β:={f_β^-1(U_β);U_βはXでの開集合})からf_β^-1(t_β)∈S_β. よって(*)よりf_β^-1(t_β)∈∪[s∈S]s(∵(**)). 以上より T=∪[s∈S]s. で大丈夫でしょうか? (3)については "⇒"は連続写像同士の合成はまた連続なので明らか。 よって逆を示す。 まずf_α。g:Y→X_αは連続だと言うのだから∀t_α∈T_α,(f_α。g)^-1(t_α)∈T_y (但し,T_yはYの位相)…(***)と書ける。 そしてこれは(f_α。g)^-1(t_α)=g^-1(f_α^-1(t_α)) (∵逆写像の定義)と変形でき, f_α^-1(t_α)∈T_α⊂Tだったので纏めると,,(***)から ∀f_α^-1(t_α)∈T,g^-1(f_α^-1(t_α))∈T_yと書け、gは連続。 (4)についてはf(a)=(f_1(a),f_2(a),…)となっていて Z(⊂f(A))の位相はT_z:={f(A)∩t_p∈2^ΠX_α;t_p∈T_p} (但しT_p:={U[u∈U];U⊂ΠT_α}) と書ける(∵相対位相の定義)。 それで示す事は∀t∈T,t∈T_zである。 ∀t∈Tを採ると∃α∈J;t∈T_αそして,f(t)=(f_1(t),f_2(t),…)となり,今f(t)∈f(A)なので f(t)∈T_zである事を示すにはf(t)∈t_pである事を示せばよい。 でこれらも大丈夫でしょうか?

  • 商写像の問題です

    商写像の問題です。 Z:整数全体の集合 複素平面C上の同値関係~を z~z'⇔z-z'∈Z 商集合Y=C/~と 射影p:C→Yを考える。 Yに商位相を導入し、位相空間とみなす。 (1)C上の写像 f(z)=c(z+i) (c∈C,i:複素数) に対し、写像g:Y→Yでp・f=g・pとなるものが存在するための係数cの条件を求めよ。 (2)(1)において写像gが存在するとき、gは連続であることを示せ。 pが連続かつ開写像といいたいのですが、どの条件からいえますか? Yに商位相を導入するだけでpは連続かつ開写像なんですか? (1)はfが連続となるための条件を求めると言い換えていいですよね?

  • p:X→Yを商写像とせよ。もし各p^-1({y})が連結でYが連結ならばXは連結

    p:X→Yを商写像とせよ。もし各p^-1({y})が連結でYが連結ならばXは連結である。 の問題です。 XとYの位相をそれぞれTとSとするとpは商写像だと言うのだからpは全射で s∈S⇔p^-1(s)∈T と書け、 各p^-1({y})が連結だからp^-1({y})の位相として相対位相T_(y):={p^-1({y})∩t;t∈T}が採れ, φ≠∀A,B∈T_(y),p^-1({y})=A∪BならばA∩B≠φ Yが連結だからφ≠∀A,B∈S,Y=A∪BならばA∩B≠φ でこれらからφ≠∀A,B∈T,X=A∪BならばA∩B≠φ を示したいのですがφ≠∀A,B∈Tに対して A∩B⊂p^-1(p(A∩B)) とからどうすればいいのかわかりません。 また,仮にφ≠∃A,B∈T,X=A∪BでA∩B=φと結論を否定してみると B=A^cで開集合の定義からBは閉集合でB∈Tに反する。 となりましたがそんなに簡単じゃありませんよね。 どうかご教示ください。

  • 「 f を集合 X から 位相空間(Y、U)への全射とするとき、以下を

    「 f を集合 X から 位相空間(Y、U)への全射とするとき、以下を示せ。 1.T={ f^-1(u)|uはUに含まれる}とおくとき、TはX上の位相である。 2.Tは f を(X、T)から(Y、U)への連続写像とするX上の最小の位相である。」 という問題についての質問です。 まず、1番は 位相の三つの条件を一つずつチェックして行けば良いので、大体はわかったのですが、 最も基本的な条件である、「Tが空集合とX自身を含む」というのが示せませんでした。これはどのようにして示すのでしょうか? それから、2番について、連続写像であることは f の定義の仕方から明らかだと思うのですが、 「最小の位相である」という部分はどのようにして示せばよいのでしょうか? よろしくお願いします。

  • 微積の問題です

    f(s)をs>0で定義された正の実数に値をとる連続関数、g(s)をf(s)の原始関数とする。 (1)εを1以下の正数とする。Dε={(x,y,z)|ε^2≦x^2+y^2+z^2≦1}上の3重積分 ∫∫∫Dε f((x^2+y^2+z^2)^3/2)dxdydz を求めよ。 (2)D={(x,y,z)|0<x^2+y^2+z^2≦1}上の広義積分 ∫∫∫D f((x^2+y^2+z^2)^3/2)dxdydz が収束するための条件、および収束する時の積分の値を求めよ。 という問題がわかりません 解説よろしくお願いします!

  • 多様体の問題です。

    多様体の問題です。 X,Y:リーマン面 f:X→Y:正則写像(定値でない) P:Xの点 f(P)=Q とする。 fの座標表示が s = t^n (n∈N)となるP,Qでの局所座標表示 t: U_P → ΔP s: V_Q → ΔQ (ΔP,ΔQ:単位開円板) がある。 つまり、リーマン面からリーマン面への正則写像は 局所的には単位開円板の n重写像Δ→Δ: z→z^n と同じ形をしている。 特にfは開写像。 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ これの証明を勉強していて、 分からないところがあって質問させてもらいました。 以下の(*)(**)(***)がその箇所です。 (*): 仮定のどの部分を使っているのでしょうか? (**): テイラー展開したのですが、 これはT^nの項でくくれといっているのでしょうか? (***): ここはさっぱり分かりません…。 「C内の半平面」というのは リーマン面Yの局所座標近傍C_zのことですか? この部分から前に進めなくて唸っているので、 どなたかよろしくお願いします。 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 【証明】 P,Qでの局所座標T,Sをとる。 fはPの近傍で S=f_T(T), f_T(0)=0 と正則関数表示される。 仮定と正則写像の一致の定理より、 f_T(0)は恒等的に0ではないことが分かる。 (*) f_T(T)をテイラー級数展開し、 係数が零でない最初の項でくくる。 この操作により、SはTの関数として、 S=f_T(T)=T^n*U(T)、 U(0)≠0 (**) の形にかける。 『|T|が十分小さければ、 U(T)の値は全てU(0)を含み、0を含まない (***) C内の適当な半平面に含まれる。 従って、U(T)のn乗根の偏角を一価かつ連続に指定することができる。 こうして、U(T)^(1/n)の1つを正則かつ一価に定めることができる』

  • 位相空間上の連続写像について

    (T,Ot),(S,Os)を位相空間とします。 A⊂Tに対してAは相対位相Oaによる位相空間、 B⊂Tに対してBは相対位相Obによる位相空間とします。 写像f:A→S、g:B→Sが連続写像であり、任意のa∈A∩Bについてf(a)=g(a)であるとします。 写像h:A∪B→Sを、 h(x)=f(x)(x∈A), h(x)=g(x)(x∈B) と定めるときhが連続写像である事を示していただきたいです。 特に、a∈AかつaはBに属さないとき、写像hはaにおいて連続でしょうか? 自分の持ってる教科書の連続写像の定義は、 φ:(T,Ot)→(S,Os)が点a∈Tで連続。 ⇔Φ(a)∈Uとなる任意のU∈Osに対して、あるV∈Ot,a∈Vが存在して、φ(V)⊂Uとなる。 と定めています。

  • 位相と連続

    何度か、このサイトで位相に関して質問をしている初学者です。 おかげさまをもちまして、理解が進んだと感じています。 さて位相の言葉を使うと、 「位相空間Yの開集合Vのfによる逆写像 f^{-1}(V)=UがXの開集合である場合、f : X→Y は連続」 などというと思いますが、この表現と通常のイメージでいうところの関数の連続/不連続とを対応させて理解を進めたいと思っています。 以下、1次元Euclid空間 X から 1次元Euclid空間 Y への写像 f : X→Yを考えます。 1)x=0でジャンプする関数(x=0で定義されている) : f(x)=x (x <= 0), f(x)=x+1 (x>0) この場合、たとえば (1/2, 3/2) のf による逆写像は f^{-1}((1/2, 3/2)) = [0, 1/2) となります。これは X の開集合ではないので、f(x)は不連続。 2)x=0でジャンプする関数(x=0で未定義): f(x)=x (x < 0), f(x)=x+1 (x>0) 【質問】 ●(1)の考え方、論証はこれで正しいでしょうか。 ●(2)を(1)のと同様の論理で考える場合、 「Yの下位集合 *** の f による逆写像 f^{-1}(***) が Xにおける開集合でないので、f は不連続」 となると思いますが、この場合 *** はどういった集合になり、どういう理屈で逆写像はXの開集合ではない、と結論付けられるのでしょうか。 (x=0で定義されていないので、Xの位相がいわゆる1次元Euclid位相ではない?) 以上、ご教示よろしくお願いします。