新しい実数の構成方法と不備について

このQ&Aのポイント
  • 新しい実数の構成方法とはどのようなものなのかについて説明します。
  • 順序関係や加法、乗法、減法、除法など、実数の構成要素について詳しく解説します。
  • また、これらの実数構成方法には不備も存在するため、その点についても指摘します。
回答を見る
  • ベストアンサー

新しい実数の構成:自然数→正の実数→実数

次のような実数の構成はあるのでしょうか? まず、10進法の表記により自然数を構成します。 0を含めます。 0,1,2,3,4,5,6,7,8,9,10, 11、12、・・・ といった数を考えます。 ケタ数は有限です。 順序関係は、まず、ケタの大小を比べ、ケタが同じであれば、最大ケタの数字を比べます。 0~9までの加法と乗法を九九として決め、一般の自然数の加法と乗法は筆算により定めます。 つぎに、小数点以下を考えます。 まず、小数点以下のケタ数が有限なる数を考えても、順序関係と加法・乗法はいままでと同様です。 そして、小数点以下のケタ数が無限なる数を考えます。 順序関係はいままでに追加して、 1=1.000・・・=0.999・・・ といったことなどを考えます。 加法と乗法の筆算も、「左から計算」していけばいいと思います。 このとき、新しく除法も考えられます。 これで、正の実数が構成できたと思いますが、 最後に、小数点以上のケタ数が無限なる数を考えます。 たとえば、 ・・・1212.12  とか ・・・333.333・・・ 順序関係はうまくいきませんが、 ・・・999+1=・・・000=0 と考えると、 ・・・999=-1 といった意味になり、 3をかけることで、 ・・・997=-3 といった意味になったり、 3でわることで、 ・・・333=-1/3 といった意味になったりします。 また、加法と乗法の筆算は、「小数点を中心に左右へ計算」していけば整合性が得られると思われます。 そして、減法・除法も考えられると思います。 つまり、負の実数が構成されたと思います。 結局、左右に無限に続く10進法表記で、実数とその加減乗除が構成されたと思います。 このような、実数の構成はあるのでしょうか? また、不備がありましたら指摘ください。

  • jlglg
  • お礼率34% (133/384)

質問者が選んだベストアンサー

  • ベストアンサー
  • adinat
  • ベストアンサー率64% (269/414)
回答No.2

アイデアは買うが、それでは無理。要するに有理数体の完備拡大体を考えたいわけだが、それには通常のユークリッドメトリックによる完備化(実数体R)と、素数pに対するp進メトリックによるp進完備化(p進体Q_p)というのがあって、それ以外はないことになってます。 10は残念ながら素数じゃないので、そのような方法ではうまく体が構成できない。たとえば、 (・・・・・・59918212890625)^2=・・・・・59918212890625 (・・・・・・40081787109376)^2=・・・・・40081787109376 となって、x^2=xの解が、x=・・・・・・0000、x=・・・・・・0001以外にもx=・・・・・59918212890625、x=・・・・・40081787109376というものが存在することになる。ここであげた・・・・・59918212890625と・・・・・40081787109376という組み合わせはなかなか面白くて、足して1、かけて0になる(左に無限に続く)2数となっている。要するに有理数の10進完備化は体にはなっていないのです(体ならば特に整域であって、因数分解は一意的でなくてはならない。したがって2次方程式に解が3個以上存在していはいけない。) 以下、おまけ。・・・・・59918212890625をどうやって求めるか。ようするにx^2=xとなるxを見つけたい。 0~9の中で2乗しても1の位が変わらないものは、0,1のほかに5と6がある。そこでまず5に注目する。5を2乗すると25になる。したがって25を2乗したものは下二桁が必ず25と変わらない。そこで25を2乗する。すると625になる。よって625を2乗したものは下三桁が必ず625となって変わらない(ただの中学数学で簡単に証明できる)。625の2乗は390625だから、この下四桁0625はやはり2乗して同じ下四桁を持つ。そこで0625を2乗して390625だから、下五桁90625は2乗して同じ下五桁を持つ。あとはこれを延々と繰り替えすことができるから、無限に左に続く、べき等元が得られる。通常の実数なら、0と1以外にそんな数はないが、左に無限に続いてもよい(これは要するに左に行けば行くほどその数がある値に収束するという意味であって、普通のユークリッドの距離とは異なる距離概念)から可能になってしまう。 このアイデア自体はちゃんと数学になっていて、Z/10Z、Z/10^2Z、…の逆極限という環として10進整数と呼ばれる、左に無限に続く数が定義可能。だけど素数じゃないとうまく整域にならないのです。したがってうまく商体を考えられない。整域だったら、p進整数から、p進体が出来ます。興味があれば、p進体などを勉強されてみるとよいと思います。参考URLの『p-進数の世界(pdf)』が秀逸な記事だと思います。

参考URL:
http://www.math.kyoto-u.ac.jp/~kato/
jlglg
質問者

お礼

回答ありがとうございます。 実数体Rはいわば、少数点以下に無限に数字が続いたもの、p進体Q_pはいわば、少数点以上に無限に数字が続いたものと考えられますが、p進数で考えても、それらの共存は無理ということでしょうか? ユークリッド距離とp進距離とは整合性がなさそうですが、でも、小数点以下と小数点以上とを分けて、組と考えて、共存させたい気もしますし。 ウィキでローラン級数を見てみると、Σ[n=-∞,∞]a_n(z-c)^nというのがあるので、それの類似もある気もしますし、どうなのでしょうか? また、自然数→(組)→整数と有理数→(極限)→実数に対し、ここでは、自然数→(極限)→0~1の実数とp進体→(組)→負も含めた実数 となってほしい気がしますし。

その他の回答 (2)

  • adinat
  • ベストアンサー率64% (269/414)
回答No.3

無理。p進距離で発散するから。ちなみにローラン級数は普通、負ベキの係数は高々有限個をのぞいて0を仮定します。でないと局所的には正則関数/0という式になってしまうから。ローラン級数は特異点においては形式的な意味しかないので、ローラン級数に特異点での値を代入してそれに意味を持たそうなどと考えないほうがいい。両側に発散する列を考えたければ、たとえば小数奇数桁を順に右に、小数偶数桁を順に左に書いていくというような方法で、{0,1,2,…,p-1}^Zに同値類を入れて数のように扱えなくもないが、計算が煩雑になるだけで何の意味もない。 数学は別に自由にものを考えてもいいけれど、ただ闇雲に話を広げても何の得にもならないし、そういうことはあまり考えないほうがいいと思う。 発散する数をも含む分けの分からない数学を構成したいというなら、そういうことを考えてみるのも一つかも知れないが(分け分からないと書いたけど、100年後に意味のある数学になってたりしてw)、単に負の数を構成したいなら、なんらそうする必要はないし、第一、繰り上がりの処理を小数点で逆転させる必要がある以上、まともな数学になりえないように思う。

jlglg
質問者

お礼

再度ありがとうございます。 たいへんよくわかりました。 ウィキで発散と検索して、繰り込み理論にたどり着きました。 もちろん今回の件とは別だと思いますが、興味が広がりました。 本当に感謝です。

  • Trick--o--
  • ベストアンサー率20% (413/2034)
回答No.1

…999+1=1…000…≠0 ではないのか?

関連するQ&A

  • 実数と自然数は同じ個数なのではないでしょうか?

    すべての自然数とすべての実数を1対1で対応させる(すべての実数を一列に並べる)方法を考えました。間違いがあれば教えてください。 *方法1*「後出し」は実数の専売特許にあらず まず、すべての自然数と、異なる実数を無限に並べたもの、とを対応させるのだが、それは、異なる実数を無限に並べた「第一列」の「一番目」の実数を「1・1」とすると、 1→1・1 2→1・2 3→1・3 ・ ・ ・ と表すことができる。これはいわゆる「すべての自然数とすべての実数を1対1に対応させたと仮定したもの」であり、対角線論法によってこの表には存在しない実数を作れることから、仮定は間違い=「実数は自然数より多い」という結論になるのが従来の話である。しかしこれは、自然数を対応させる対象を「第一列」に限定したことによる間違った結論だ。 対角線上の数字のずらし方は、すべて一つずらす1111…の他に、1211…,1234…,2624…と無限にあるので、一つの対角線から、「第一列」には存在しない実数を無限に生み出すことができる。対角線論法によって生み出された無限の実数を並べた「第二列」に自然数を対応させることができなければ先の結論は正しいことになるが、そんなことは全然なく、「第二列」の「一番目」の実数を「2・1」とすると、 1→1・1 2→2・1 3→1・2 4→2・2 5→1・3 6→2・3 ・ ・ ・ のように、始めの、自然数と「第一列」の対応を解消した後、あらためて自然数を、「第一列」と「第二列」に、交互に対応させればいいだけの話なのだ。で、これは、「第一列」と「第二列」を合わせて「新たな第一列」にした(=始めの状態にリセットした)ということであり、この「新たな第一列=N1」の対角線から、対角線論法によって「新たな第二列=N2」が生まれるので、そしたらまたそれまでの対応を解消して 1→N1・1 2→N2・1 3→N1・2 4→N2・2 5→N1・3 6→N2・3 ・ ・ ・ と、自然数を「新たな第一列」と「新たな第二列」に交互に対応させ、これを無限に繰り返せばいいのである。自然数を、「新たな第二列」の実数に、無限に対応させ続けることができるということは、すなわち両者の個数は同じということなのである。 それにしても、無限に生み出される「新たな第一列」と「新たな第二列」は合わせて「新たな第一列」にできるのに、なぜ始めから一列に並べることができないのか。 方法1を別の言い方でまとめると、まず 1→1・1 2→1・2 3→1・3 ・ ・ ・ のように、すべての自然数と、異なる実数を無限に並べたもの、とを対応させるところから始めて、次に 1→1・1 2→  ←2・1 3→1・2 4→  ←2・2 5→1・3 6→  ←2・3 ・ ・ ・ と、「第二列」の実数を「第一列」に割り込ませて、始めの、すべての自然数と、異なる実数を無限に並べたもの、とを対応させた状態 1→1・1 2→2・1 3→1・2 4→2・2 5→1・3 6→2・3 ・ ・ ・ ↓ 1→1・1(1・1) 2→1・2(2・1) 3→1・3(1・2) 4→1・4(2・2) 5→1・5(1・3) 6→1・6(2・3) ・ ・ ・ にリセットして、そしたらまた 1→1・1 2→  ←2・1 3→1・2 4→  ←2・2 5→1・3 6→  ←2・3 ・ ・ ・ と、「第二列」の実数を「第一列」に割り込ませて…とこれを無限に繰り返す、といった具合に説明することができる。 *方法2*実数を整列させる 方法1は「動的な対応」とでも言うべきものであり、できれば「静的な対応」が望ましいわけで、そのためには実数を整列させる必要があるのだが、以下のようなやり方ではだめなのか。 まず 1→0.1 2→0.2 ・ ・ ・ 9→0.9 10→0.01 11→0.11 12→0.21 ・ ・ ・ 99→0.99 100→0.001 101→0.101 102→0.201 ・ ・ ・ 9999→0.9999 10000→0.00001 10001→0.10001 10002→0.20001 ・ ・ ・ …835218→0.812538… …835219→0.912538… …835220→0.022538… ・ ・ ・ というように、すべての自然数と、0と1の間のすべての実数を、1対1に対応させる。右側が「0と1の間のすべての実数」であることに異論はあるだろうか。この列に存在しない(0と1の間の)実数は存在するのか。この列は、小数第一位の数字が1,2…9,0,1…9,0,1…となっているので、だいたいその値で推移しながら、実数が、0と1の間を無限に埋めていく形になっている。 例えば、小数点以下、一恒河沙の一恒河沙乗番目が2、一阿僧祇の一阿僧祇乗番目が3、一那由他の一那由他乗番目が4の 0.1…2…3…4… のような無理数について、この並びの途中までのものしかないとしたら、ではどこまでのものならあるのか。0.1…2か、0.1…2…3か、0.1…2…3…4か。実際には「途中まで」などということはなく、つまりこの列にこの無理数は存在し、この任意の無理数が存在するなら(0と1の間の)すべての無理数が存在するのである。で、この表は左右が対称的になっているから、右に無限小数が存在するなら左には無限桁の自然数が存在するのである。 有限桁の自然数を重複することなく無限に並べることができないのと同様に、有限小数を、重複することなく無限に並べることはできない。この列は0と1の間の実数を整列させたものであり、この列に存在しない(0と1の間の)実数は存在しない。 で、すべての実数を整列させると 0,0.1,0.2…0.9,0.01,0.11,0.21… 1,1.1,1.2…1.9,1.01,1.11,1.21… 2,2.1,2.2…2.9,2.01,2.11,2.21… ・ ・ ・ (0),-0.1,-0.2…-0.9,-0.01,-0.11… -1,-1.1,-1.2…-1.9,-1.01,-1.11… -2,-2.1,-2.2…-2.9,-2.01,-2.11… ・ ・ ・ となるので、すべての自然数とすべての実数を1対1に対応させると、 1→0 2→0.1 3→-0.1 4→1 5→-1 6→2 7→-2 8→1.1 9→-1.1 10→0.2 11→-0.2 12→0.3 13→-0.3 14→1.2 15→-1.2 16→2.1 17→-2.1 18→3 19→-3 ・ ・ ・ のようになる。 ところでそれでも従来の考えが正しい場合、循環小数と非循環小数の個数に差が出る本質的な原因、両者の違いは何なのか。明確な違いは「整数比で表せるか表せられないか」だが、循環小数と非循環小数をそれぞれ循環数列と非循環数列に置き換え(今問題にしているのは個数であり、小数点を取り除いても個数は変わらない)れば整数比は関係なくなるわけだし。単なる数字の組み合わせに過ぎない同じ無限数列でありながら、循環させないというだけで個数が多くなるというのは何とも妙な話である。

  • 実数について

    (1)任意の実数αは有限または無限小数で表せることを証明せよ。 (2)任意の実数αはある単調増加な有利数列の極限となることを示せ。 という問題なんですがまったくどうやって手をつけていいのかがわかりません。わかる方おしえてください。

  • 正の数・負の数は小学校で学ばせられないのか?

    マイナスの数はたとえ小学生でも日常で普通に使うから、小学校で習った方が良い気がするのですが、何故か中学校で習うみたいです。 自分は分数よりは理解し易いと思っているのですが、不思議と中学校で躓く人が多いと聞きました。 しかし、中学校で躓くのは短期間で正の数・負の数の意味から乗法・除法まで習ったのが原因ではないでしょうか? そこで次のように少しずつステップアップしていくように習わせたら理解出来るのではないでしょうか? 小学4年 正の数・負の数の意味 小学5年 正の数・負の数の加法・減法 小学6年 正の数・負の数の乗法・除法 このようにして正の数・負の数を小学校で学ばせられないのでしょうか?

  • 特別な素数について

    1を素数Nで割ると最大(n-1)桁の数が繰り返す循環小数になるのは直ぐ分かるのですが,この最大桁数で繰り返す循環小数になる素数Nは他の素数とどう異なるのか分かりません。 またこの素数の見付け方は,無限に有るのか等も分かりませんので教えて下さい。 該当素数 2,7,17,19,23,29,47 非該当素数 3,5,9,11,13,31,37, 41,43 計算が間違えてなければ上記のようになるようなので すが。

  • 最大50桁の実数の和・差・積を求めたい

    C++で、2つの最大50桁の実数を入力して、その和・差・積を求めるプログラムを作りたいのです。 実数をchar型に入力させて、それを1桁ずつint型に変換したいのですが、どのようにやればよいのでしょうか? また、その際、符号や小数点はどうすればよいのでしょうか? 計算の流れとしては、 ○足し算 小数点を合わせる ⇒下位の桁から1桁ずつ足し算していく ⇒結果が10以上の場合、10を引き、左隣の桁の数字に1を加える ○引き算 小数点を合わせる ⇒下位の桁から1桁ずつ引き算していく ⇒引かれる数字のほうが引く数字より小さい場合、引かれる数字に10を足し、左隣の桁の引かれる数字から1を引く というような感じで考えているのですが、小数点の合わせ方がわかりません。 また、掛け算に関しては、筆算の要領でやろうと思うのですが、どのようにやればよいのでしょうか? 私はC++の勉強歴が短いので、できれば初心者向けのわかりやすい説明でお願いします。

  • ゼロより大きい最小の数

    ここでも出ていた「1=0.999・・・か?」と言う問題で数学の好きな人(数学の知識のある人かどうかは不明。ただし物理には詳しい。)と話をしていた時に出てきた話題なのですが・・・。 その人の言うには、 「ゼロより大きい最小の数は存在する。それは 0.00・・(0が無限個続く)・・01 である。」 とのことでした。 以下、禅問答のような質疑。 「無限個のゼロの列で、最後のゼロが存在することができますか?」 「最初のゼロが存在しているのだから『最後のゼロは存在しない』と決めつけることはできない。」 「それならゼロの数は数えられるのではないのですか?」 「両端が存在することと、数えられるかどうかは別問題。」 「最後の1は桁数の概念がわからないのですが・・。」 「最後の1を『何桁め』と定義することはもちろんできない。言えるのは無限個のゼロとの順序関係だけ。しかしそれがわかれば数としては機能する。」 「そもそも『数』として認められるのですか?」 「この数自身は実数の定義から外れると思うが、あらゆる実数と大小関係を比較することはできる。言いかえると数直線上で自らの存在場所を主張することができる。」 「それって、実数が連続であることと矛盾するのではないですか?」 「実数の連続性は単なる公理であって証明されたものではない。」 そう言われて眺めていると、確かに、ゼロより大きい最小の数のように思えてきました。 このような数は本当に存在を認められるのでしょうか? また、知人の主張に数学的な誤りがあるのでしょうか? ぜひ数学に詳しい方々からの御意見をよろしくお願いいたします・

  • 有理数と無理数について

    「有理数は有限小数または循環小数となり、無理数は循環しない無限小数となることを示せ」という問いに関してアドバイスを下さい。   私的に考えた解答を書いてみます。  有理数とは、mおよびnが整数である時、m/nを有理数と呼ぶ。つまり、有限小数または循環小数が分数であるならば、有理数は有限小数または循環小数と言える。 例えば循環小数A=0.12121212・・・・を分数にする。 (10xA)-A=(12.12121212・・・)-(0.12121212・・・)     9A=12      A=4/3 となり、循環小数Aは分数となり有理数は有限小数または循環小数である。・・・・・どうでしょうか? 「無理数が循環しない無限小数である」というのは実数数において有理数以外のものが無理数だと認識している私は、分数表示できない数は無理数である・・としか示せないので、なんだか上手に表現できません。 アドバイス待ってます。

  • 有理数でない数について 

    今高校一年の勉強をしているのですがわからない事が一つあります。 整数、有限小数、循環小数のいずれかであれば必ず有理数であるのは解ります。この逆(有理数であれば循環少数、有限小数、整数のいずれかである)も納得です。 ここで循環しない無限小数は上から有理数ではない、もわかります。 ここで質問なのですが有理数でないものは必ず循環しない無限小数であるといえるのでしょうか?

  • 実数と直線上の点を1対1に対応づけて考えることができる理由

    数直線(=実数と直線上の点を1対1に対応づけて考えた直線)についての質問です。自分は任意の無限小数を決めても、直線上にその無限小数に対応する点は取れないと思います。数字が途切れないからです。どういう風に考えれば数直線を理解できるのでしょうか?_

  • 化学での有効数字について(途中計算)

     以下についてアドバイスいただけると助かります。  有効数字について  和・差について・・・小数点以下の桁数が少ない方に合わせる  積・商について・・・桁数が少ない方に合わせる  については、分かったのですが、有効数字3桁での指定があるときに  19.1、24.5889、0.12553、3.2952の4つの数にたいして  ○和を筆算で求める場合    小数第1位に合わせるために、    19.1→19.10(小数第2位表示)    24.5889→24.58(小数第3位切り捨て)    0.12553→0.12(小数第3位切り捨て)    3.2952→3.29(小数第3位切り捨て)  として和を求め、小数第1位(小数第2位四捨五入)にする  ○積を筆算で求める場合    有効数字3桁に合わせるために、    19.1→19.10(有効数字4桁表示)    24.5889→24.58(5桁目切り捨て)    0.12553→0.1255(5桁目切り捨て)    3.2952→3.295(5桁目切り捨て)  として積を求め、有効数字を3桁(4桁目は四捨五入)にする  と思っています。  1.このやり方で大学受験では問題ないのでしょうか。    特に気になっているのは、計算をする前の丸め方(すべて切り捨てにしているところ)です。  2.計算ステップがいくつもあり、一度に計算ができない場合、そのステップ毎に得られる数の    丸め方は切り捨て・四捨五入のどちらがよいのでしょうか。  よろしくお願いします。