• ベストアンサー
※ ChatGPTを利用し、要約された質問です(原文:スターリングの公式の証明)

スターリングの公式の証明

oodaikoの回答

  • oodaiko
  • ベストアンサー率67% (126/186)
回答No.2

>関数  g(x)=(x+1/2)+log(1+1/x) です。 また間違えてますね。 x>1/2だとやはりg(x)>1になります。 だいいち g(x)に定数項が含まれていたら級数 Σ(n=0、∞)g(x+n) が収束するはずがありません。 アップする前に投稿内容の確認画面が出るので、アワてずにそこできちんと確認してから投稿ボタンを押すようにしましょう。

donchan01
質問者

補足

たびたび申し訳ないです・・・。 関数  g(x)=(x+1/2)*log(1+1/x)-1 です。

関連するQ&A

  • スターリングの公式周りのことについて

    現在私は大学3年で、ゼミでスターリングの公式について調べているのですが、 1、e(n/e)^n<n!<ne(n/e)^n 2、n!~√(2πn)(n/e)^n 3、n!=√(2πn)(n/e)^n*(1+1/12n+1/288n^2-1139/5140n^3+O(1/n^4)) O:ラージオーダー この3つに関して、3から2を、2から1を証明するように課題を出されたのですが、いまいちわかりません。 英文の数学書(TheBook)を和訳しながら読み進めていて、その中でヒントになりそうなのは F(n)~G(n):lim[n→∞]F(n)/G(n)=1くらいしかありませんでした。

  • f_n=g_n a.e on R^nとする。g_n→g(測度収束)ならばf_n→g(測度収束)を

    次の問題で質問です。 [問]f_n=g_n a.e on R^nとする。g_n→g(測度収束)ならばf_n→g(測度収束)を示せ(f_n,g_n,gはルベーグ可測な関数)。 [証明] R^nでの殆どいたるところでf_n=g_nだというのだから零集合Zを除いたx∈Eではf_n(x)=g_n(x)という意味だと思います。 f_n,g_n,gをE⊂R^n上のルベーグ可測関数とする。 仮定より,0<∀ε∈R,0=lim[n→∞]μ({x∈E;|g_n(x)-g(x)|≧ε}) =lim[n→∞]μ({x∈E\Z;|g_n(x)-g(x)|≧ε}∪{x∈Z;|g_n(x)-g(x)|≧ε})(但しZは零集合) =lim[n→∞](μ({x∈E\Z;|g_n(x)-g(x)|≧ε})+μ({x∈Z;|g_n(x)-g(x)|≧ε})) (∵測度の定義(可算加法性)) =lim[n→∞](μ({x∈E\Z;|f_n(x)-g(x)|≧ε})+μ({x∈Z;|g_n(x)-g(x)|≧ε})) (∵仮定「f_n=g_n a.e.」) =lim[n→∞](μ({x∈E\Z;|f_n(x)-g(x)|≧ε})+0) (∵零集合の定義) =lim[n→∞]μ({x∈E\Z;|f_n(x)-g(x)|≧ε}+μ({x∈Z;|f_n(x)-g(x)|≧ε})) (∵零集合の定義) ≧lim[n→∞]μ({x∈E\Z;|f_n(x)-g(x)|≧ε}∪{x∈Z;|f_n(x)-g(x)|≧ε})) (∵測度の定義) =lim[n→∞]μ({x∈E;|f_n(x)-g(x)|≧ε}+) 即ち, 0<∀ε∈R,lim[n→∞]μ({x∈E;|f_n(x)-g(x)|≧ε})=0. ∴ {f_n}はgに測度収束する。 となったのですがこれで正しいでしょうか?

  • オイラーの公式の証明方法

    オイラーの公式e^ix=cosx+isinxは次のようにマクローリン展開を使って証明されているようです。 cosx=1-x^2/2!-x^4/4!+・・・+{(-1)^n/(2n!)}x^2n sinx=x-x^3/3!+x^5/5!・・・+{(-1)^n/(2n+1)!}x^(2n+1) e^ix=1+ix/1!+(ix)^2/2!+・・・=1+ix/1!-x^2/2!-ix^3/3! =cosx+isinx しかしながら厳密にn→∞において同じかどうか証明するためダランベールの収束判定というものを使わなければならないそうです。証明方法をご存知の方がいらっしゃったらご教示いただきたくお願いいたします。

  • 大学で解析学を習っているのですが、以下の問題が分かりません。解答お願い

    大学で解析学を習っているのですが、以下の問題が分かりません。解答お願いします。 次の等式を示せ。 (1) f(x)=arcsinx (-1<x<1) のマクローリン展開をせよ。その際、項別積分可能であることを丁寧にチェックすること。 (2) {f_n(x)} (n=1から∞)は区間I上で定義された関数列とする。このとき、{f_n(x)} (n=1から∞)が関数f(x)にI上一様収束すれば、{f_n(x)} (n=1から∞)はf(x)に各点収束することを示せ。

  • 高木関数に似た問題です。

    高木関数に似たものについての質問です。 実数上の関数fを f(x)=x (0≦x<1/2), 1-x (1/2≦x<1) f(x+1)=f(x) で定義します。すると,級数 Σ2^(-r)・f(4^r・x) r=1~∞の総和 はある連続関数Fに一様収束します。(これは証明済み) このとき,mは整数,nは自然数としたときに,u=(4m)4^(-n) ,v=(4m+2)4^(-n)とおくと 2^n・F(u) は偶数で 2^n・F(v) は奇数になることを示せ。 という問題です。 計算だけだとは思うのですが,細かい部分であいません。 よろしくお願いします。 2^n は2のn乗を表しています。

  • 関数f(x)が区間Iで下に凸である事を利用した証明

    関数f(x)が区間Iで下に凸である時、Iの任意のn個の点x1,x2,・・・xnに対して、不等式f((x1+x2+・・・+xn)/n)≦(f(x1)+f(x2)+・・・+f(xn))/nが成り立つ事を示せ、という問題で、下に凸である事の定義x1<x<x2で(f(x)-f(x1))/(x-x1)≦(f(x2)-f(x))/(x2-x)をどうやってつかってやれば証明がうまく出来るのでしょうか?ヒントをください。お願いします。

  • 「e」が絡んだ不等式証明

    「自然数nについて、次の不等式が成り立つことを求めよ。    n・log(n)-n+1 ≦ log(n!) ≦ (n+1)log(n+1)-n  」 という問題で、最初は素直に左辺-右辺≧0を使って示しました。 その後、別解として数学的帰納法を用いた証明に挑みました。 n=1のときは楽勝ですが、n=kで成り立つことを仮定した後の「n=k+1」のときに、式変形でつまずきました。今回の質問は、その最後の大小関係の評価についてです。(以下、式はn=k+1のときのもの) log{(k+1)!}-(k+1)log(k+1)+(k+1)-1 =log(k+1)+log(k!)-(k+1)log(k+1)+k ≧k・logk-k+1-k・log(k+1)+k =1-log(1+1/k)^k ・・・・・・・・・・・・(1) (1)をみた時、「あ、これってeの定義式に似てるな」と思い、もしかして (1)≧1-log(e)=0 ・・・・・・・・・・・・・(2) でも言えるのかと思ったのですが、 疑問I: だからといって果たして(2)で等号が言えるのか? 疑問II:そもそも、lim[x→∞](1+1/x)^x=e は、eより大きい数からeに近付くのか?eより小さい数からeに近付くのか?そしてlim[x→-∞](1+1/x)^x=e では? 上の疑問について、答が出せる方、宜しくお願いします。

  • 数III相当 積分関連 方針

    連問投稿で申し訳ないです。 学校で与えられた、詳解のない問題集なのですが、 積分関連が苦手で、消化できないものが5つあります。 答えのない問題集で勉強するのは効率が悪いとは思いますが、 どなたか詳しい方、どうぞよろしくお願いします。答えは最後に書きました。 <第1> 2つの定積分 A=∫[0,π] {e^(-ax)*sin^2(x)} dx 及び B=∫[0,π] {e^(-ax)*cos^2(x)} dx で、AとBを求めよ。 ※A+BとA-Bを求めて、何とかするんじゃないかと思うのですが...? <第2> 関数f(x)はf(0)=0を満たす。また、g(x)=∫[0,x] {(e^x + e^t)*f´(t)} dt とおく。g´(x)を求めよ。 さらに、e^x*f(x)=-3x^2*e^x+g(x) が成り立つとき、f(x)を求めよ。 <第3> 定積分∫[0,1] log{(x+2)/(x+1)} dx の値を求めよ。 さらに、lim[n→∞] 〔{(2n+1)(2n+2)…(2n+n)}/{(n+1)(n+2)…(n+n)}〕^(1/n) を求めよ。 ※log(x+2)-log(x+1)と分解して、それぞれを部分積分してみたのですが、答えにない定数が残ってしまいました。 <第4> x≧0のとき、不等式x-(1/2)*(x^2) ≦log(x+1) ≦x を証明せよ。 さらに、lim[n→∞]  log〔1+{k/(n^2)}〕 を求めよ。 <第5> 定数c≠0としてlim[x→∞] 〔{sin√(x+c)}-{sin√(x)}〕 を求めよ。 答えは、 <第1>A=2{1-e^(-ax)}/{a(a^2 +4)}及び B={a^2 +2}{1-e^(-ax)}/ {a(a^2 +4)} <第2>g´(x)=e^x*f(x) + 2e^x*f´(x)及びf(x)= x^3+3x^2 <第3>log(27/16)及び27/16 <第4>証明は略されてる。極限は1/2 <第5>0                    どうぞよろしくお願いしします。

  • ルベーグの収束定理(優収束定理)

    {f_n;n=1,2,…}を測度空間(Ω,F,μ)上の可測関数の列として、(Ω,F,μ)上の可測関数fに概収束しているものとします。もし{g_n;n=1,2,…}が(Ω,F,μ)上の正値な可積分関数の列で、gも(Ω,F,μ)上の可積分関数で、さらにすべてのnについてE[g_n]=E[g]<∞が成り立つようなもので、|f_n|≦g_nがすべてのnについて成り立つならば、lim E[f_n]=E[f]が成立する。 という主張なのですが、証明ができないでいます。お知恵を貸してください。普通のタイプの優収束定理だと、nによらない可積分関数で上から抑えられていれば極限交換が許されるはずなのですが、この拡張版だとそれがg_nとnによっています。とはいえg_nの積分は全部同一なので、修正すればうまく証明できるはずだと思うのですが… なおE[・]はΩ上の測度μによる積分を表すものとします。

  • スターリングの公式について質問があります。

    スターリングの公式の右辺は、√2π=lim(x->∞) n!/n^(n+2/1)*e^(-n)なのですか?それとも√2π=lim(x->∞) n!/n^{2/(n+1)}*e^(-n)なのですか? もしよかったら理由も添えてくれるとありがたいです。