- ベストアンサー
- 暇なときにでも
ガロアの基本定理の前のところ:2
ガロアの基本定理の前のところ 以下は,永田「可換体論」の一部ですが、 定理2.7.3. ある可換体の部分体K、L.K’について、K⊆L∩K’とする。 (イ)略 (ロ)LがKの有限次分離的拡大体で、K’がKの正規拡大体であれば、K’(L)はK’の有限次分離的拡大体で、[K’(L):K’]=[L:(K’∩L)] 証明 (ロ)Lを生成する元aのK’∩L上の最少多項式をf(x)とし、f(x)の根をa1、------、ar(r=degf)とする。K’(a)=K’(L)、K’(L)はK’のガロア拡大である。 f(x)がK’上で Π(x-ai)を因子にもったとする。(a=a1、s≦r)。 i=1~s その係数c1、---、csをとる。ci∈K’. 他方ciは、a1、------、asの整式で表されるからK上分離的。 ゆえにK’に含まれるK’∩Lの有限次ガロア拡大体K'''でc1、- - -、csを含むものがある。 以下は省略しますが、上記のゆえに以下説明くださればありがたいのですが。
- taktta
- お礼率72% (1031/1430)
- 数学・算数
- 回答数2
- ありがとう数3
- みんなの回答 (2)
- 専門家の回答
質問者が選んだベストアンサー
- ベストアンサー
- 回答No.2
- ojisan7
- ベストアンサー率47% (489/1029)
(1)K’はK’に含まれるK’∩Lの分離的な拡大体 (2)K’はK’に含まれるK’∩Lの正規な拡大体 というのは、仮定より、K’⊇K’∩L⊇Kであることを確認して下さい。次に、f(x)がK’上でπ[i=1~s](x-ai)を因子に持ったとするという意味は、 ai∈K’(ただし、i=1~s)ということです。また、その係数ci∈K’はaiの整式(対称式)で表されるのでK上分離的です。 以上のことから、K’は、K’∩Lの分離的な有限次正規拡大体になります。 わかりにくければ、f(x)=g(x)h(x)として、 g(x)=π[i=1~s](x-ai) としてみて下さい。このとき、ai∈K’,ci∈K’ですので、K’は、K’∩Lの正規な拡大体です。(ただし、i=1~sです。)
その他の回答 (1)
- 回答No.1
- ojisan7
- ベストアンサー率47% (489/1029)
>ゆえにK’に含まれるK’∩Lの有限次ガロア拡大体K'''でc1、- - -、csを含むものがある。 ということですが、確かにそのようなK'''は少なくとも1つは存在します。それは、K'''=K’のときです。K’はK’に含まれるK’∩Lの分離的な有限次正規拡大体ですから、K’∩LのGalois拡大体になりますね。
質問者からの補足
K’はK’に含まれるK’∩Lの分離的な有限次正規拡大体ですから、K’∩LのGalois拡大体になりますね (1)K’はK’に含まれるK’∩Lの分離的な拡大体 (2)K’はK’に含まれるK’∩Lの正規な拡大体 各々なぜかもう少しわかりやすく説明してほしい。 (2)はK’がKの正規拡大ならその中間に対してもいつでも正規なのでしょうか。 よろしくお願いします。
関連するQ&A
- ガロアの基本定理の前のところ
以下は,永田「可換体論」の一部ですが、 定理2.7.3. ある可換体の部分体K、L.K’について、K⊆L∩K’とする。 (イ)略 (ロ)LがKの有限次分離的拡大体で、K’がKの正規拡大体であれば、K’(L)はK’の有限次分離的拡大体で、[K’(L):K’]=[L:(K’∩L)] 証明 (ロ)Lを生成する元aのK’∩L上の最少多項式をf(x)とし、f(x)の根をa1、------、ar(r=degf)とする。K’(a)=K’(L)、K’(L)はK’のガロア拡大である。 f(x)がK’上で Π(x-ai)を因子にもったとする。(a=a1、s≦r)。 i=1~s その係数c1、---、csをとる。ci∈K’. 他方ciは、a1、------、asの整式で表されるからK上分離的。#### ゆえにK’に含まれるK’∩Lの有限次ガロア拡大体K”でc1、---、csを含むものがある。 以下は省略しますが、上記の####部分についてなぜK上分離的か説明くださればありがたいのですが。
- ベストアンサー
- 数学・算数
- ガロア理論:単拡大定理の意義
ガロア理論で,有理数体を係数体として,その根をx1,x2,...xnとしたとき,これらの根を添加した体Q(x1,x2,...xn)と単拡大定理を使った拡大Q(V(x1,x2,...xn)とはどこが違うのでしょうか.もちろん表現として違うことはわかりますが,この根を変数とするパラメータVが存在することによって,体を扱う上で何が違うのでしょうか.単拡大定理の存在理由が今一つわからないので,教えてください.
- ベストアンサー
- 数学・算数
- ガロア理論入門の定理4について
今日は! ガロア理論入門(寺田文彦 訳)の20ページの定理4について質問させて 頂きます。 ================================================= 定理4.任意の行列において、右列階数は左行階数に等しく、 左列階数は右行階数に等しい。体が可換の時は、 四つの数は互いに等しく、これを行列の回数と名づける。 説明を判りやすくして頂くために、下記の行列について 質問させて頂きます。 A=[2 3 5 8; 1 2 3 5; 1 1 2 3] B=[2 3 5 8; 1 2 3 5; 1 1 2 9] 上記の行列A,Bに於きまして、Aの行階数は3で、列階数は2であり、 Bの行階数は3で、列階数も3であると思います。 Aの階数は2で、Bの階数は3と思います。 Q1)上記に間違があれば、ご指摘ください。 Q2)行列Aは、非可換体で、Bは可換体と考えて宜しいでしょうか? 可換と非可換の区別が出来ませんので、この質問を致しました。 3)行列の階数は、MatlabやOctaveでrank関数で得ることが出来ますが その行階数、列階数を得ることが出来る関数又はmコード はありますか? 以上、初心者ですがコメント頂けますと大変あり難いです。
- 締切済み
- 数学・算数
- ガロア体 について質問します
ガロア体の基礎を学んでいるのですが、計算方法の辺りで分からず悩んでいます。 わかる方がおられましたら教えてください! 下のような例について考えます。 ------------------------------------------- GF(4)=GF(2^2)={0,1,α,α^2} の拡大体です。 f(x)=x^2+x+1 についてαを根として考えます。 すると、 f(α)=α^2+α+1=0より α^2=-(α+1) =-α-1 …(1) =α+1 α^3=α^2*α =(α+1)α =α^2+α =α+1+α =α(1+1)+1 =1 ------------------------------------------- のようになります。 ここで質問なのですが、 【質問1】 上記(1)の部分で「-α-1=α+1」となりますが、なぜ「-α=α」なのでしょうか。 【質問2】 上記のようなガロア体においては「1+1=0」となります。なぜでしょうか。理由について教えてください。 ※GF(3)={0,1,2}では「1+1=2」です! 私が疑問に思っていることは以上です。 ガロア体初心者ですので、是非やさしくおしえてくださいm(_ _)m
- ベストアンサー
- 数学・算数
- ガロア理論についてなのですが
代数学の問題で、 体K=Q(√m,√n)はQ上ガロア拡大で、ガロア群Gは、 (Z/2Z)^2と同値であることを示せ。 なんですが、体Q(√m,√n)が、Q上4次拡大であることは示せたのですが、そこからどうすればいいのかわかりません。 できればガロア理論に関しての参考URLか、解法を教えていただきたいのですが。お願いしますm(__)m
- ベストアンサー
- 数学・算数
- 有限体の元の追加した体もある条件で有限体の証明
体Kの上の代数拡大体の元a(1)、---、a(n-1)、a(n)について、a(1)、---、a(n-1) がKの上に分離的であれば,K(a(1)、---、a(n-1)、a(n))はKの単純拡大であるという定理の証明にあたり、まずKが有限体であれば,K(a(1)、---、a(n-1)、a(n))も有限体であるとありますがこれはどう説明できますか。Kが有限体ならK(a)も有限体がいえればいいと思いますが。
- ベストアンサー
- 数学・算数
- フーリエ級数収束定理とリーマン・ルベーグの定理
フーリエ級数収束定理の証明を考えているのですが、ある疑問が出て、証明にたどり着けません。 問題の根本はリーマンルベーグの定理から来るものです。 フーリエ級数収束定理の証明を考えると、、最終的に、以下の式の証明を考えなければならないと分かりました。 lim[n→∞]{∫[-T/2→T/2]{(f(u+t)-f(t))/sin(ωu/2)*sin((n+1/2)ωu}du}=0 (ω=2π/T) …(1) この証明にリーマンルベーグの定理を用いるのですが、困った事がおきました。 フーリエ級数収束定理とは次のような定理です。 周期Tの周期関数f(t)が「区分的に滑らか」であるとき、f(t)のフーリエ級数代n部分和S[n](t)に関して、次の極限式が成り立つ。 lim[n→∞]{S[n](t)}=f(t) …(2) (ただし、不連続点では、[右辺]={f(t-0)+f(t+0)}/2) 「区分的に滑らか」と「区分的に連続」の定義は次のようになります。 (※)「区分的に滑らか」…有限個の微分不可点(傾きが急変する点や不連続点)t[k](k=1,2,3,…,n)が存在するもののそれ以外の点では連続かつ有界。また、 tkの近傍(t[k]±0)において、t[k]-0 における左側微分係数(f'-(t[k]-0))及び、t[k]+0 における右側微分係数(f'+(t[k]+0))が存在する。 (微分不可点を除いて、関数とその導関数が有界であれば区分的に滑らかであるといえる。) (※)「区分的に連続」…有限個の不連続点tkを除いて連続かつ有界。また、tkにおける左側極限値 f(t[k]-0) 及び、右側極限値 f(t[k]+0) が存在する。 lim[n→∞]{∫[-T/2→T/2]{(f(u+t)-f(t))/sin(ωu/2)*sin((n+1/2)ωu}du}=0 ((1)式) が成り立つことを示すには、リーマン・ルベーグの定理(補題)を使うと思います。このリーマン・ルベーグの定理とは、 関数f(x)が区間[a,b]で、「ある性質」を持つとき、次の極限式が成立する。 ・lim[n→∞]{∫[a→b]{f(x)sin(nx)}=0 …(3) ・lim[n→∞]{∫[a→b]{f(x)cos(nx)}=0 という定理です。最終的には、このリーマン・ルベーグの定理(補題)が証明でき、(1)式に応用することができれば良いのではないかという結論に至りました。 リーマン・ルベーグの定理の証明について、いくつかのサイトを参考にしたのですが、f(x)が持つ「ある性質」の部分が統一されておらず、 ・区分的に滑らか ・区分的に連続 の2通りの流儀があるようでした。 リーマン・ルベーグの定理の成立条件として「f(x)が区分的に滑らか」を採用した場合、 ∫[a→b]{f(x)sin(nx)}=[a→b](1/n)[-f(x)cos(nx)]+∫[a→b](1/n){f'(x)cos(nx)} から、f(x)及びf'(x)が[a,b]で有界ならば、n→∞としたとき零になり、リーマン・ルベーグの定理が成立することが分かります。 これを(1)式に対して適用します。(3)式のf(x)は、(1)式では、(f(u+t)-f(t))/sin(ωu/2)です。 (f(u+t)-f(t))/sin(ωu/2)=g(u) とおくと、g(u)およびg'(u)が有界であることを言うことが必要になります。 g(u)=(f(u+t)-f(t))/u*u/sin(ωu/2) , lim[u→0]g(u)=2/ω*f'(t) より、 [-T/2≦u≦T/2]において、f(t)及びf'(t)が発散しなければ、つまりf(t)が周期T内で「区分的に滑らか」ならば、g(u)は有界であることが言えそうなのです が、g'(u)が[-T/2≦u≦T/2]で有界になることが自分には証明できませんでした。もし証明できるならば教えてください。 一方で、リーマン・ルベーグの定理の成立条件として「f(x)が区分的に連続」を採用した場合ですが、この定理の証明に http://tmlaboratory.at-ninja.jp/doc/Riemann-Lebesgue_lemma/node3.html http://homepage3.nifty.com/rikei-index01/ouyoukaiseki/riemanrubeg.html を参考にしながら次のように検討しました。 区分的に連続の関数f(x)が閉区間[a,b]で有限個(M個)の不連続点(x=t[k](k=1,2,…,M))を持つとする。 [a,b]内で連続となる区間はM+1個できる。この連続区間を、取りうるxの小さいほうから順にT[k](k=1,2,…,M,M+1)と書く。 各区間T[k]の範囲は、 T[k]:[t[k-1]≦x≦t[k]] (k=1,2,…,M+1) (ただし、t[0]=a,t[M+1]=b) 各連続区間T[k]上の連続関数をf[k](x)(k=1,2,…,M+1)とする。 f(x)は[a,b]で有界だから |f(x)|≦F , |f[k](x)|≦F …(4) を満たす実数Fが存在する。 区間T[k]上でf[k](x)に対するリーマン・ルベーグの定理が成り立つことが言えれば、 [a,b]上のf(x)に対するリーマン・ルベーグの定理が成り立つことが言える。 f(x)の任意の連続区間T[k]=[t[k-1],t[k]]をN等分し、T[k]上の分割点を小さい方より、 t[k-1]=x[0]<x[1]<x[2]<…<x[l-1]<x[l]<…<x[N-1]<x[N]=t[k] とおく。 分割した小区間の長さを⊿xすると ⊿x=x[l]-x[l-1] (l=1,2,…,N) =(t[k]-t[k-1])/N すると求める積分は、 ∫[t[k-1]→t[k]]{f[k](x)sin(nx)}dx=Σ[l=1,N]{∫[x[l-1]→x[l]]{f[k](x)sin(nx)}dx} …(5) となる。このときxの範囲は、(x[l-1]≦x≦x[l])である。 (5)式に対し、その大小関係を考えていく。 |∫[t[k-1]→t[k]]{f[k](x)sin(nx)}dx| ≦Σ[l=1,N]{∫[x[l-1]→x[l]]|f[k](x)-f[k](x[l])|・|sin(nx)|dx+|f[k](x[l])|・|∫[x[l-1]→x[l]]{sin(nx)}dx|} …(6) |sin(nx)|≦1 |f[k](x)|≦F より (6式)≦Σ[l=1,N]{∫[x[l-1]→x[l]]|f[k](x)-f[k](x[l])|・1・dx+F|∫[x[l-1]→x[l]]{sin(nx)}dx|} ≦Σ[l=1,N]{∫[x[l-1]→x[l]]|f[k](x)-f[k](x[l])|dx+F/n*(|cos(nx[l-1])|+|cos(nx[l])|)} …(7) |cos(nx[l-1])|≦1 |cos(nx[l])|≦1 より (7式)≦Σ[l=1,N]{∫[x[l-1]→x[l]]|f[k](x)-f[k](x[l])|dx+2F/n} =Σ[l=1,N]{∫[x[l-1]→x[l]]|f[k](x)-f[k](x[l])|dx}+Σ[l=1,N]{2F/n} …(8) f[k](x)の連続性から (x[l-1]≦x≦x[l])の範囲のx、及び任意の正の実数εに対して、 |x-x[l]|≦⊿x=x[l]-x[l-1]=(t[k]-t[k-1])/N ならば |f[k](x)-f[k](x[l])|≦ε を満たす⊿xがただ一つ定まる。このとき分割数Nも適切に取る。 (8)式に対し (8式)≦Σ[l=1,N]{∫[x[l-1]→x[l]]{ε}dx}+2NF/n =Σ[l=1,N]{ε(x[l]-x[l-1])}+2NF/n =Nε(x[l]-x[l-1])+2NF/n =ε(t[k]-t[k-1])+2NF/n よって |∫[t[k-1]→t[k]]{f[k](x)sin(nx)}dx|≦ε(t[k]-t[k-1])+2NF/n …(9) (9)式について 2NF/n≦ε となるようにnを大きく取れば |∫[t[k-1]→t[k]]{f[k](x)sin(nx)}dx|≦ε(t[k]-t[k-1])+2NF/n ≦ε(t[k]-t[k-1])+ε =ε(t[k]-t[k-1]+1) 最終的に |∫[t[k-1]→t[k]]{f[k](x)sin(nx)}dx|≦ε(t[k]-t[k-1]+1) …(10) の関係が言える。 参照したサイトでは、εは任意に取ることができるから、n→∞とすればε→0より lim[n→∞]|∫[t[k-1]→t[k]]{f[k](x)sin(nx)}dx|=0 となり、リーマン・ルベーグの定理が成り立つと結論付けていますがε→0とするとき、 ∀ε>0,∀x[l]>0∈T[k],∃⊿x>0 s.t.∀x∈⊿x=x[l]-x[l-1], |x-x[l]|≦⊿x⇒|f[k](x)-f[k](x[l])|≦ε となるように⊿xを決めているから、ε→0 とするとき同時に ⊿x→0 になり、分割数Nを∞にする必要がでてきます。 結局はn→∞,ε→0としても、⊿x→0,N→∞としなければならず、 2NF/n≦εの関係からlim[n→∞]{2NF/n} (≦ε) は零に収束しないような気がします。 どうすれば答えが導けるでしょうか。
- 締切済み
- 数学・算数
質問者からのお礼
ごていねいな解説どうもありがとうございました。 おかげでわかりました。 どうも分離的という意味がよく理解できてなかったのが原因でした。