• ベストアンサー

4次元空間について

4次元空間に半径1、原点中心の超球(x^2+y^2+z^2+w^2=1)があります。これを、4次元における平面(例えばa*x+b*y+c*z+d*w=eといった平面)で切り取った切片、つまりこの平面と超球の共通部分はおそらく3つの変数で表せると思うのですが、その切片を3次元空間で表すとどんな図形になるのでしょうか? 考えているのですがイマイチつかめません。 どなたかお力添えをおねがいします。

質問者が選んだベストアンサー

  • ベストアンサー
  • pancho
  • ベストアンサー率35% (302/848)
回答No.4

ついでの補足です。 #2の補足の中で、解が楕円体になりそうだと書かれていますが、これは質問の方程式を解く過程で、「x^2」と「y^2」「z^2」に掛かる係数が一致していないからと想像されます。 両方程式から「w」を消去すると、 (1-a^2/d^2)x^2 + (1-b^2/d^2)y^2 + (1-c^2/d^2)z^2 + ..... = 0 となりますね。 これが3次元空間における球面の方程式 x^2 + y^2 + z^2 = 一定 に一致しないので楕円体ではないかと疑っているのではないでしょうか? これは、解となる図形を3次元空間に投影したものを表わす式でしかないからです。同じことを3次元の球と平面で考えてみてください。 (1-a^2/c^2)x^2 + (1-b^2/c^2)y^2 + ..... = 0 で、やはり「x^2」と「y^2」に掛かる係数は一致しません。これは、解となる正円をxy平面に投影した図形の方程式になるからです。 同じように、ご質問の2つの方程式からwを消去しただけの解(?)は、3次元への投影に過ぎませんので、ご注意ください。 もっとも、4次元空間上に浮かぶ3次元(?)の球を、あくまで3次元空間上で観察することを考えているのなら、楕円体というのも間違えでは有りません。3次元空間に浮かぶ2次元の円を、2次元の世界(つまり、xy平面)から見れば、やはり楕円にしか見えませんから。 以上。

RX78GP03D
質問者

お礼

回答ありがとうございます. 今必要としていたのは,切片の図形を3次元空間へ投影した物がどうなるかということでしたので,非常に勉強になりました. 大変お世話になりました.

その他の回答 (3)

  • pancho
  • ベストアンサー率35% (302/848)
回答No.3

物理を勉強していた者です。 物理の立場では、4次元目の軸は時間で捕らえるのが一般的ですし、数学者以外の人にもイメージしやすいので、この観点で説明します。 この解釈の場合、3次元空間に住んでいる私たちは、時間軸を移動する(時間が立つ)ことで4次元空間を擬似的に体験していると考えられます。丁度、0次元の点が線上を移動し、1次元の線が平面をなぞり、2次元の面が空間を移動する様に…。 4次元における平面の特殊な例(W=一定)が、時間(時刻)一定の私達の3次元空間です。ある瞬間の私達ですね。 そこで、私達3次元空間から4次元超球体を見たとしたらどうなるでしょう。 それは、あたかも空中に小さな球体が突然現れ急激に拡大していき、最大付近ではゆっくり大きくなり、最大値を過ぎてからはゆっくり小さくなり始め、最後は急激に小さくなって突然何も無くなる、という変化になります。 その球体の半径の変化は、丁度、3次元上で球体が平面を一定速度で横切る時の切断面の半径の変化と同じです。 イメージできますか? 結論。 ご質問の図形は、皆様のご説明の通り球面(あるいは球体)です。

  • starflora
  • ベストアンサー率61% (647/1050)
回答No.2

    ご自分で考えておられて、イメージが掴みにくいと云う話なので、イメージの話をします。どうして、こういうイメージあるいは図形になるかは、図形になるかの証明の式は、自分で考えてください(証明も欲しいということでしたら、それも記しますが、手間がかかりますので、簡単に述べます)。     まず、結果から云いますと、仰られている切片は、共通部分があれば、それは「球面」です。     それは、貴方が平面と思って記している式「a*x+b*y+c*z+d*w=e」は、実は、四次元空間では、三次元空間になります。従って、四次元超球との共通部分があれば、それは、二次元図形になるのです。「球面」です(二次元図形とは、自由度二次元の意味です。これは四次元空間のなかの球面ですから、三次元の球面ではないのです。特定の三次元空間のなかに収まる球面ではありますが)。     四次元空間のなかの平面もある訳で、そういう平面が、四次元超球と共通部分があれば、その場合の切片は、「三次元の球体」です。     少し補足しますと(事実上、証明になりますが)。式「a*x+b*y+c*z+d*w=e」は、四次元ヴェクトル(a,b,c,d)と(x,y,z,w)の内積が一定という意味です。三次元の場合、こういう特定ヴェクトルとの内積が一定のヴェクトル全体の集合は、結果的に、特定ヴェクトルと直交し、かつ、その特定ヴェクトルの先端を通る平面になります。四次元の場合は、特定の四次元ヴェクトルとの内積が一定のヴェクトルの集合体が描く図形は、特定ヴェクトルと直交する図形で、特定ヴェクトルの先端を通る図形、つまり、そのような三次元空間です。     四次元超球は、四次元的に任意の方向で、点対称になっています。従って、特定四次元ヴェクトル(a,b,c,d)は、切片の図形がどういうものかを考える時には、超球を原点を中心に任意に回転しても同じ図形でなるので、(0,0,0,d)ヴェクトルとの内積で考えてよいことになります。d*w=eと云う式は、第四の軸W軸のe/dという点を通る(直交する)三次元空間なのです。e/d=1という時、超球との切片は、「点」です。0<=e/d<1の時、これは、図形次元二次元の球面になります。(つまり、超球の式は、「x^2+y^2+z^2+w^2=1」ですが、これにw=e/dを代入すると、x^2+y^2+z^2=1-(e/d)^2<1 で、これは二次元図形で、かつ球面の式なのです)。  

RX78GP03D
質問者

お礼

間違えて補足に再質問を書いてしまいました。ごめんなさい。

RX78GP03D
質問者

補足

申し訳ありません、超球(x^2+y^2+z^2+w^2=1)と書きましたが、実は超球体(x^2+y^2+z^2+w^2<=1)のことを言いたかったのです。 数式を解いてみたところ、どうも楕円体となりそうなのですが・・・。 (二次元図形とは~~球面ではありますが)と ありますが、4次元空間の中の球面を3次元空間上に投影した場合どのような図形になるのでしょうか? もう一つですが、結局「a*x+b*y+c*z+d*w=e」は4次元における平面(みたいなもの)ではないのでしょうか? なかなか理解が及ばず苦しんでおります。申し訳ありません。よろしく御願いします。

  • chukanshi
  • ベストアンサー率43% (186/425)
回答No.1

例えば、話を3次元にして、 球:x^2+y^2+z^2=1を、Z=0の平面で切ったとすると、 その切り口は、 x^2+y^2=1 つまり、原点を中心とした円となります。 一般の平面で切ってもやはり切り口は円です。 同様に、話が2次元だと、 円:x^2+y^2=1を、y=0の平面(直線)で切ったとすると、 その切り口は、 x^2=1 つまり、点(1,0),(-1,0)となります。 一般の直線で切っても切り口は2点になります。 もっともな話だと思います。 では、4次元では。 超球:x^2+y^2+z^2+w^2=1を超平面w=0で切るとその 切り口は、x^2+y^2+z^2=1、すなわち3次元の球ですね。 よって、一般に4次元超球の超平面での切断面は 3次元の球になると思います。

関連するQ&A

  • 3次元空間のグラフについて

     問題を解いていてわからない問題が出てきましたので質問させてください。 ↓以下問題と答え (問題) 3次元空間においてx^2+y^2+z^2=a^2であらわされる曲面が、 x+y+z=bであらわされる平面と一点で接しているとき、aとbの関係を表せ。 (答え) 3次元空間においてx^2+y^2+z^2=a^2であらわされる曲面とは、原点を中心とし、 半径をaとする球面である。球面と平面が1点で接しているとき、 球面の中心と平面との距離は球面の半径と同一であることになる。 したがって、b/ルート3 = aとなる。 と書いてあるのですが、文の流れからb/ルート3は球面の中心と平面との距離を表していると思うのですがなぜこうなるのかが全く分かりません。見にくい文で申し訳ないですが、分かる方がいらっしゃいましたらよろしくお願いします。

  • 三次元空間においた図形の方程式

    三次元における図形の方程式の表し方が分かりません。 ・n次元の図形の方程式は『等号』が(n-1)個で表現される。 という文章も目にしましたがその理由も分からず。。。 例えば,三次元における円の方程式として,『円の中心座標,O1(x0,y0,z0)』と『円周上の三点,P1(x1,y1,z1),P2(x2,y2,z2),P3(x3,y3,z3)』がそれぞれ得られた場合,どのような方法でどのような方程式が求められますか? 一つ考えた方法としまして,三点を通る球と平面をそれぞれ求め,それらの連立を解いてみましたが,それだけだと確実に変数が一つ無くなってしまいます。 上記の『三次元は等号が二つ』という事が関係してくるのでしょうか。。。 三次元空間に対しての知識が不足していますので,出来れば『具体的な式』や,さらには『具体的な係数など』まで頂けると非常に助かります。 お願い致します。

  • 高校数学、3次元の式の考え方

    高校数学、3次元の式の考え方 中心が(1、-3,2)で原点を通る球をSとする。 (1)Sとyz平面の交わりは円になる。この円の中心と半径を求めよ。 (2)Sとz=kの交わりは半径√5の円になるという。kの値を求めよ。 (問題集の解答) (1) Sの半径rは中心(1、-3,2)と原点との距離に等しいからr^2=1^2+(-3)^2+2^2=14 よって、Sの方程式は(x-1)^2+(y+3)^2+(z-2)^2=14 球面Sとyz平面が交わって出来る図形の方程式は (y+3)^2+(z-2)^2=13かつx=0(★) これはyz平面上で中心(0、-3,2)半径√13の円を表す。 (2) Sとz=kが交わって出来る図形の方程式は (x-1)^2+(y+3)^2+(k-2)^2=14、z=k(★) (疑問) (1)直線と直線(曲線)の交点は点になる、平面と平面のぶつかったところは線(交線)になる、というのはわかるのですが、なにとなにがぶつかると平面になるのでしょうか? (2)例えばy=x+1とy=2xは(1,2)を交点に持ちます。 このとき、(1,2)はどのように求めたのかといえば、2直線の交点というのは2つの方程式をともに成り立たせるからこの連立方程式を解けばよいと考え、(1,2)を求めた。 では、 Sとyz平面の交わりをどう考えるのか? S:(x-1)^2+(y+3)^2+(z-2)^2=14、yz平面:x=0をともに満たすのが2つの交わりの正体と考えたのですが、(y+3)^2+(z-2)^2=13かつx=0となるのがイマイチピンときません。 方程式はxyzが満たすべき条件ですから、2つに方程式がなることもあるだろうなとは思いますが、(y+3)^2+(z-2)^2=13かつx=0がSの方程式、yz平面の方程式をともに満たしているというのがわかりません。 (3)3次元では平面の方程式はax+by+cz+d=0という形で表されます。 x=0ならばx=0という条件以外任意という意味ですから、yzへと延びてゆくと考えて、yz平面と判断しているのですが、3次元では直線の方程式はどう表されるのでしょうか?2次元ではx=0は直線なので、これを見ると少し違和感があります。 中心が(1、-3,2)で原点を通る球をSとする。 (1)Sとyz平面の交わりは円になる。この円の中心と半径を求めよ。 (2)Sとz=kの交わりは半径√5の円になるという。kの値を求めよ。 (問題集の解答) (1) Sの半径rは中心(1、-3,2)と原点との距離に等しいからr^2=1^2+(-3)^2+2^2=14 よって、Sの方程式は(x-1)^2+(y+3)^2+(z-2)^2=14 球面Sとyz平面が交わって出来る図形の方程式は (y+3)^2+(z-2)^2=13かつx=0(★) これはyz平面上で中心(0、-3,2)半径√13の円を表す。 (2) Sとz=kが交わって出来る図形の方程式は (x-1)^2+(y+3)^2+(k-2)^2=14、z=k(★) (疑問) (I)直線と直線(曲線)の交点は点になる、平面と平面のぶつかったところは線(交線)になる、というのはわかるのですが、なにとなにがぶつかると平面になるのでしょうか? (II)例えばy=x+1とy=2xは(1,2)を交点に持ちます。 このとき、(1,2)はどのように求めたのかといえば、2直線の交点というのは2つの方程式をともに成り立たせるからこの連立方程式を解けばよいと考え、(1,2)を求めた。 では、 Sとyz平面の交わりをどう考えるのか? S:(x-1)^2+(y+3)^2+(z-2)^2=14、yz平面:x=0をともに満たすのが2つの交わりの正体と考えたのですが、(y+3)^2+(z-2)^2=13かつx=0となるのがイマイチピンときません。 方程式はxyzが満たすべき条件ですから、2つに方程式がなることもあるだろうなとは思いますが、(y+3)^2+(z-2)^2=13かつx=0がSの方程式、yz平面の方程式をともに満たしているというのがわかりません。 (III)3次元では平面の方程式はax+by+cz+d=0という形で表されます。 x=0ならばx=0という条件以外任意という意味ですから、yzへと延びてゆくと考えて、yz平面と判断しているのですが、3次元では直線の方程式はどう表されるのでしょうか?2次元ではx=0は直線なので、これを見ると少し違和感があります。

  • 3次元空間での傾き、切片の求め方

    ある点S(X1,Y1)からある点G(X2,Y2)の直線があると仮定します。 このとき 傾きA=(Y2-Y1)/(X2-X1) 切片BはY=AX+Bより    =Y-AX と、2次元空間の場合はわかります。 ですがこれが3次元空間になるとどのように解けばいいのか分からないです。分かる人がいたら教えてください。 ある点S(X1,Y1,Z1)からある点G(X2,Y2,Z2)の直線があると仮定します。 このとき 傾きA= ? 切片B= ?

  • 3次元空間中の2つの円の交点の求め方

    3次元空間において、2つの円の各中心座標(x,y,z)、各法線ベクトルおよび各半径が分かっているときに、これらの円が作る交点(x,y,z)を求める方法を教えてください。できれば、交点がいくつ存在するかを示す判別式もお願いします。

  • 3次元空間で3点を通る平面を2次元座標で表すには

    3次元のベクトル(?)に関して質問させてください。 いまxyz座標の3次元空間の中に原点O(0,0,0), 点A(ax,ay,az), 点B(bx, by, bz)の3つの点があるとします。 3次元空間の中に3つの点があるので、これら3点を通る平面がひとつだけ決まります。 この平面がXY平面となるような、新しいXYZ空間を下記の条件で定義したいです。 原点O(0,0,0)に対応する点   → O'(0, 0, 0) 点A(ax,ay,az)に対応する点  → A'(αx, 0, 0) ただし αx = √(ax^2 + ay^2 + az^2) 点B(bx, by, bz)に対応する点 → B'(βx, βy, 0) このときのβx, βyの決め方を教えていただけないでしょうか? (おそらくβyの符号で2通りあると思います) ----- 具体的な目的は、以下のようなものです。 xyz座標の関数として値が決まるf(x, y, z)があります。 これを点O, A, Bを通る平面上でメッシュを切って計算しました。 この結果をgnuplotのpm3d mapでグラフ化したいのですが、gnuplotの入力は以下のようなフォーマットです。 X1 Y1 f(x1,y1,z1) X2 Y2 f(x2,y2,z2) X3 Y3 f(x3,y3,z3) X4 Y4 f(x4,y4,z4) ... そこでxyz空間の平面OAB上の点Pn(xn,yn,zn)を対応するXY平面上の点Pn'(Xn,Yn)に変換したいです。 よろしくお願いします。

  • 4次元空間の超平面で、パラメータを消去するには?

    4次元のxyzw直交空間を考えます。 直線は、パラメータを用いて、 x=x[0]+a[1]s y=y[0]+b[1]s z=z[0]+c[1]s w=w[0]+d[1]s のように書けて、パラメータを消すと、 (x-x[0])/a[1]=(y-y[0])/b[1]=(z-z[0])/c[1]=(w-w[0])/d[1] のように書けます。 平面(?)は、パラメータを用いて、 x=x[0]+a[1]s+a[2]t y=y[0]+b[1]s+b[2]t z=z[0]+c[1]s+c[2]t w=w[0]+d[1]s+d[2]t のように書けますが、パラメータを消すとどうなるのでしょうか? 超平面は、パラメータを用いて、 x=x[0]+a[1]s+a[2]t+a[3]u y=y[0]+b[1]s+b[2]t+b[3]u z=z[0]+c[1]s+c[2]t+c[3]u w=w[0]+d[1]s+d[2]t+d[3]u のように書けますが、パラメータを消すとどうなるのでしょうか? おそらくAx+By+Cz+Dw+E=0のように書けるとは思いますが、それらの係数は具体的にはどのような形なのでしょうか? 3次元空間の平面の場合には、この最後の問いは、2つの3次元ベクトルの外積で表されると思うので、今回の設定を4次元にしてみました。

  • 4次元空間上での平面の式

    任意の点を(x,y,z,u)とした4次元空間で (1)3次元の立体を表す式は ax+by+cz+du=e でいいですか? (2)2次元の平面を表す式は一般にどのような形になりますか? 上記のことに疑問を持った理由。 2次元空間で1次元の直線を表す式は、一般にax+by=cとなる。 これは、2点(x,y),(xo,yo)を通り、方向ベクトルが(a',b')で媒介変数tとして x=a't+xo y=b't+yo と書くこともできる。 3次元空間で2次元の平面を表す式は、一般にax+by+cz=d となる。 これは、 平面上の2点(x,y,z)と(xo,yo,zo)を結ぶベクトルとこの平面に垂直な直線の方向ベクトル(a,b,c)の内積が0であるという条件より導かれる。 実際に計算すると a(x-xo)+b(y-yo)+c(z-zo)=0 ax+by+cz=axo+byo+czo になり、ax+by+cz=dという形と同値であることが確認できる。 【別な考え】 3次元空間内の平面は、異なる3つの点によって決定するので、異なる3点を P(xo,yo,zo)、Q(x1,y1,z1)、R(x2,y2,z2) とする。この平面上の任意の点X(x,y,z)は、媒介変数t,sを使って OX↑=OP↑+tPQ↑+sPR↑ と書ける。 成分表示にするために OP↑=(xo,yo,zo) PQ↑=(a,b,c) PR↑=(a',b'c') と方向ベクトルを定義すると、 x=xo+at+a's......(1) y=yo+bt+b's......(2) z=zo+ct+c's......(3) という書き方も平面を表す式である。 実際に(1)と(2)から未知数t,sについてx,yの式で表すことができるので、それを(3)式に代入すれば、(1)(2)(3)式は、一つの式 a"x+b"y+c"z=d'という形になる。 直線を表す式は、媒介変数tを使って x=at+xo y=bt+yo z=ct+zo または、 (x-xo)/a=(y-yo)/b=(z-zo)/c=t となる。 4次元空間で同じように、 直線や平面や立体を考えてみた。 2次元では、(1,0)と(0,1)が直交の基底ベクトル。 3次元では、(1,0,0)と(0,1,0)と(0,0,1)が直交の基底ベクトル。 したがって、 4次元では、(1,0,0,0)と(0,1,0,0)と(0,0,1,0)と(0,0,0,1)が直交の基底ベクトル。 4次元空間では、点は4つの成分で表される。 4次元空間での直線について。 直線は2点が与えられば書ける。 2点(x,y,z,u)と(xo,yo,zo,uo)を通り、その直線の方向ベクトルが(a,b,c,d)だとしたら、媒介変数tを使って、 x=at+xo y=bt+yo z=ct+zo u=dt+uo となって (x-xo)/a=(y-yo)/b=(z-zo)/c=(u-uo)/d=t 次に4次元空間での3次元立体について。 2次元空間では、それより一つ次数が低い1次元の直線は一つの式 ax+by=c で与えられた。 3次元空間では、それより一つ次数の低い2次元の平面は、一つ式 ax+by+cz=d で表さられた。 したがって、4次元空間では、それより一つ次数の低い3次元の立体は、 ax+by+cz+du=e で表されるだろう。 【別な考え】 4次元空間では、ある方向ベクトル(a,b,c,d)に直交する立体は一つしかない。なぜなら、4次元空間での基底ベクトルは4つで空間(立体)は3つの基底ベクトルで決定されて、残り一つが残っているからだ。 立体上の2点(x,y,z,u)と(xo,yo,zo,uo)を結ぶベクトルとこの立体に垂直な直線の方向ベクトル(a,b,c,d)の内積が0であるという条件で計算すると a(x-xo)+b(y-yo)+c(z-zo)+d(u-uo)= 0 ax+by+cz+du=axo+byo+czo+duo になり、ax+by+cz+du=eという形になる。 2次元の平面はどうだろうか? (ここからが本題) 4次元空間では、ある方向ベクトル(a,b,c,d)に直交する平面は、2つあるはずだ。 なぜなら、4次元空間での基底ベクトルは4つで平面は2つの基底ベクトルで決定されて、残り2つが残っていて、それはこの平面に直交するように選べるからだ。 平面は、異なる3つの点によって決定するので、異なる3点を P(xo,yo,zo,uo)、Q(x1,y1,z1,u1)、R(x2,y2,z2,u2)、 とする。この平面上の任意の点X(x,y,z,u)は、媒介変数t,sを使って OX↑=OP↑+tPQ↑+sPR↑ と書ける。 成分表示にするために OP↑=(xo,yo,zo,uo) PQ↑=(a,b,c,d) PR↑=(a',b',c',d') と方向ベクトルを定義すると、 x=xo+at+a's......(1) y=yo+bt+b's......(2) z=zo+ct+c's......(3) u=uo+dt+d's.....(4) という書き方も平面を表す式である。 (1)と(2)を連立して、未知数t,sについてx,yの式で表すことができるので、それを(3)式と(4)式代入すれば、(1)(2)(3)(4)式は、2つの式 a"x+b"y+c"z+d"u=e' a"'x+b"'y+c"'z+d"'u=e" になる。 この2つの式からuを消去すれば、結局、 Ax+By+Cz=D という形になる。 zを消去すれば、 Ax+By+Cu=D yを消去すれば、 Ax+Bu+Cz=D xを消去すれば、 Au+By+Cz=D

  • 4次元空間問題

    4次元ベクトル空間(変数はxyzu) x+y+z+u=1 において、 この式を満たす空間上にあり、この空間と直交し、お互いに直交する3つのベクトル空間を求めて下さい。

  • ベクトル空間 次元 について

    前回質問(数ベクトル空間 ベクトル空間)させて頂いた内容です。 http://okwave.jp/qa/q8631000.html#answer 前回の質問内容を整理してわからなかった点を再度質問させて頂きます。 ベクトル空間の次元についてですが、以下のように理解しました。 Vはベクトル空間であるとします。 x,y,z∈Vについて、 (1)x,y,zのうち2つのベクトルが0なら1次元ベクトル空間 (2)x,y,zのうち1つのベクトルが0なら2次元ベクトル空間 (3)x,y,zがどれも0ベクトルでなければ3次元ベクトル空間 と理解しました。 R^2は2次元ベクトル空間 R^3は3次元ベクトル空間 R^nはn次元ベクトル空間 という説明がウェブ上で多々ありますが、 これは、ベクトル空間の「成分の数(項数)」であって次元とは関係 ないと理解しました。 ここまでで間違いありますでしょうか? 間違いがあればご指摘よろしくお願い致します。 *****以下、質問内容***** x,y,z∈Vについて、 (1)x,y,zのうち2つのベクトルが0なら1次元ベクトル空間 (2)x,y,zのうち1つのベクトルが0なら2次元ベクトル空間 (3)x,y,zがどれも0ベクトルでなければ3次元ベクトル空間 ですが、 (1)、(2)、(3)はいずれもR^3の部分空間とのことなのですが、この点がよくわかりません・・・ 私のイメージなのですが、 (1)⊂(2)⊂(3)のイメージがあるのですが、これは大きな間違いでしょうか? 3次元ベクトル空間の部分空間は2次元ベクトル空間と1次元ベクトル空間 と言ったイメージなのですが・・・ R^3の部分空間であるとは、「成分が3つのベクトル空間」の部分空間と言う事で、 次元とは無関係ですよね? 以上、ご回答よろしくお願い致します。