• 締切済み

巾零行列についての問題

oodaikoの回答

  • oodaiko
  • ベストアンサー率67% (126/186)
回答No.3

akio_02 さんこんにちは。レポートということなのでヒントだけ (1)Aは巾零 ⇒ Aの固有値はすべて0 対偶を示します。Aが0でない固有値λを持つとします。その固有値λに対する固有ベクトルをxとすると、すべてのm≧1に対してA^m x =λ^m x となります。xは0ベクトルではなく、λ^mも0ではないので右辺は0ベクトルではありません。よってA^m は零行列ではありません。すなわち… (2)Aの固有値はすべて0 ⇒ Aは巾零 ケーリー・ハミルトンの定理を使います。Aはn次行列で固有値がすべて0なので、Aの固有多項式は λ^n=0 となります。そこでλの代わりにAを固有多項式に代入すると…… (3)Aの固有値はすべて0 ⇒ A^n=0 (2)と全く同様。 (4)A^n=0 ⇒ Aの固有値はすべて0 これも対偶を示します。示し方は(1)と全く同様。

関連するQ&A

  • 行列の問題を教えてください。

    行列の問題で解けなくて困っています. よろしければ教えていただけないでしょうか。 行列に関係する以下の問い(1)~(4)に答えよ。 (1)2行2列の行列をAとする。さらにその固有値をλ1,λ2(λ1≠λ2)とし、それぞれに付随する固有ベクトルを(x1,y1)と(x2,y2)とする。 P≡ |x1 x2| |y1 y2| と置くと、固有値と固有ベクトルの定義から AP=P|λ1 0| |0 λ2| と書ける。ここから、 A=P|λ1 0|P^-1 | 0 λ2| および A^n=P|λ1 0|^nP^-1 |0 λ2| となることを示せ。ここでP^-1はPの逆行列、nは正の整数、A^nは行列Aのn乗を示す。 (2)固有値が1と-1である2行2列の行列Bがある。この行列のn乗B^nを求めよ。さらにその逆行列(B^n)^-1を求めよ。B^nと(B^n)^-1の両方において、nが偶数と奇数で答えが異なるので、両者を区別して答えを示せ。必要なら2つの正則な正方行列B1、B2の積の逆行列が (B1B2)^-1=B2^-1B1^-1 となることを使え。 (3)固有値が1と-1で、それぞれに付随する固有ベクトルが(2,1)と(1,1)である2行2列の行列Cを求めよ。 (4)xとyを未知数とする次の連立方程式 |3 -4|^21 |x| =|10| |2 -3| |y| |7| を解け。ここで |3 -4|^21 |2 -3| は行列 |3 -4| |2 -3| の21乗を表す。 という問題です。 計算過程、解答のほうをどうかよろしくお願いいたします。

  • 行列

    Aを成分全て1のm×m行列とします。 B= (0,A A転置,0) Cは対角行列で、m番目までnが並び、それよりしたはmが並ぶとすると、 C-Bの固有値が0,m,n,m+n になることの証明を重複度もこめてどなたかおねがいします。

  • 行列

    行列Aを成分全て1の(m×n)行列とします。このとき、 行列B=( 0,A A転置,0 ) としたとき、Bの固有値が√(mn),0(重複度m+n-2) となることの証明をどなたかお願いします。

  • 行列の問題

     N行N列の行列A   行列Aの成分は成分を(行,列)で表すと、(1,1)=(N,N)=2、(1,2)=(1,N)=(2,1)=(N,1)=(N-1,N)=(N,N-1)-1  この行列の固有値と固有ベクトルを求めたいのですが、どうすればいいかわかりません。どなたか教えてください。

  • 行列の二項定理を使った問題です。

    数Cの問題です。 わからなかったので、誰か教えてください。 二項定理の応用です。 (1)二次の正方行列Aが実数αに対し(A-αE)の二乗=0(零行列)を満たすとき、 任意の自然数nに対して Aのn+1乗=(n+1)αのn乗A-nαのn+1乗E が成り立つことを示せ。 ただし、Eは単位行列、0は零行列である。 (2)A=( 3 2 -2 -1)←二次の正方行列 のとき自然数nに対してAのn乗を求めよ。 ( 3 2 ) ↑ (-2 -1 ) 協力よろしくお願いします。

  • 行列の固有値問題

    以下の証明はどのように行えばいいのでしょうか。 n次多項式f(s)=a(n)s^n + a(n-1)s^(n-1) + ・・・・ +a(1)s + a(0)とする。 行列A(n×nの正方行列)の固有値がλ1、λ2、・・・、λnであるとき、行列多項式f(A)の固有値はf(λ1)、f(λ2)、・・・、f(λn)であることを、任意のn次正方行列は適当な正則行列QによってQ^(-1)AQが下三角行列になるようにできることと、下三角行列の固有値は対角成分になることを用いて示せ。 という問題です。分かりにくくてすいません。 行列多項式というものが初めて目にする言葉ですし、方針が立ちません。 よろしくお願いします。

  • 行列の証明問題 (固有値と固有ベクトルの性質)

    行列A=[a(jk)](j:行 k:列 )に関する諸命題を証明し、適当な例を用いて説明せよ。 ただし、λ(1),・・・,λ(n)はAの固有値とする。I:単位行列 (a)実固有値と複素固有値  Aが実行列のときには、その固有値は実数または共役複素数の対からなる。 (b)逆行列  逆行列A^(-1)は0がAの固有値でないとき、またそのときに限り存在する。  その固有値は1/λ(1),・・・,1/λnである。 (c)トレース  Aの対角成分の和をトレースまたは対角和という。これは固有値の和に等しい。 (d)スペクトル移動  行列A-kIは固有値λ(1)-k,・・・,λ(n)-kをもち,Aと同じ固有ベクトルをもつ。 (e)スカラー倍、ベキ  行列kAの固有値はkλ(1),・・・,kλ(n)であり、行列A^m(m=1,2・・)の固有値は  λ(1)^m,・・・,λ(n)^mである。固有関数はいずれもAの固有関数と同じである。 (f)スペクトル写像定理  ’多項式行列’  p(A)=k(m)A^m+k(m-1)A^(m-1)+・・・+k(1)A+k(0)I は固有値    p(λj)=k(m)λj^m+k(m-1)λj^(m-1)+・・・+k(1)λ(1)^(m-1)+k(0) (j=1,・・・,n) をもち、Aと同じ固有関数をもつ。 (g)ペロンの定理  正の成分l(12),l(13),l(31),l(32)をもつレスリー行列Lには1つの正の固有値が  存在することを示せ。 これらの問題(証明)が難しくて分かりません。教えて下さい、お願いします。

  • 行列の問題です。

    行列の問題です。 A^tはAの転置行列 R^nの2つのベクトル x^t=(x_1,..,x_n) y^t=(y_1,..,y_n) に対して内積<x,y>を Σ_{i=1~n}x_iy_i で定義する。 Aをn×n実交代行列とする。 Bをすべての固有値が正となる実対称n×n行列とする。 (1)任意のベクトルx∈R^nに対して <Ax,x>=0を示せ。 (2)任意のベクトルx∈R^nに対して <Bx,x>≧0であり、 統合はx=0のときに限ることを示せ。 (3)A+Bは正則行列となることを示せ。 よろしくお願いします。

  • 行列Aのn乗

    行列Aに対しA^nを計算する。 |7 -6| |3 -2| 答えは |-1+2^2n+1 2-2^2n+1| |-1+2^2n  2-2^2n | です。 Aを何乗かすると、とても大きな数になってしまい、 規則性がみえてきません。 固有値を求めて、対角化する説明が載っている、 ページのそばにこの問題がのっていますので、 それを使うのかと思うのですが、 全くわかりません。

  • 行列が0(ゼロ)に収束することを求めるにはどうすれば?

    (確率を扱った問題のある期待値を求める問題の過程なのですが) すべての固有値が1より小さいn×n行列Pがあります。この行列Pのk乗(P^k)のkを無限大にすると、行列Pは0(ゼロ)に収束するのです。これを求めるにはジョルダンの標準形を使用して求めるらしいのですが、その具体的な計算方法がわからなくて困っております。本など調べてみたのですが力不足で申し訳ありません。もしよければその計算方法や流れなど教えていただければ幸いです。よろしくお願いいたします。 行列について: 確率を扱った行列ですので、固有値(成分)は全て1より小さい分数で、対角成分の上(対角成分を除いた右上の三角形部分)は全て0です。左下の三角形部分には1より小さい分数が入っています。